Seismicity of Turkey and neighbouring regions, 1899-1915

N. N. AMBRASEYS, C. F. FINKEL
Department of Civil Engineering, Imperial College of Science and Technology, London SW7 2BU, UK

Received February 4, 1987 ; revised March 19, 1987 ; accepted April 14, 1987.

Abstract

This paper presents in some detail the method used to assess the seismicity of Turkey and neighbouring regions of the eastern Mediterranean during the period 1899-1915 by combining early instrumental data and macroseismic information. This early period is chosen for study because it is poorly-known, because it is the earliest for which instrumental data are available but rarely used, and also because press reports for the period are more abundant than those of later years in information that may be used to supplement other seismological data. More than 750 events were found for the region, thus increasing the number of known earthquakes by a factor of seven : the resulting catalogue forms part of the paper. Magnitudes have been calculated for over 150 events, both on early Milne seismographs and later damped instruments. An empirical relationship that predicts M_{s} in terms of felt radius and intensity has been established : this allowed assignment of magnitudes from feit effects to another 230 events. It is shown that the instrumental data of the first quarter of this century are invaluable in seismicity studies and that early teleseismic information deserves wider use. It is also shown that the short period sample of $1899-1915$ is representative of the regional activity which can be deduced from a longer period of observations and that it represents a background activity independent of the large-scale tectonic elements. It is found that other regions, removed from the Anatolian fault zone. are capable of producing earthquakes of magnitude in excess of 7.0, and that the present-day quiescence of the east Anatolian fault zone is only temporary.

Key words: Turkey, eastern Mediterranean, seismicity, magnitude determination, historical studies.

Annales Geophysicae, 1987, 5B, (6), 701-726.

INTRODUCTION

The purpose of this paper is to present in some detail the method used to assess the seismicity of the northeast Mediterranean region during the years 1899-1915 by combining early instrumental data and macroseismic information derived from a variety of sources. The resulting catalogue of earthquakes for this period is presented in table 2.
The period 1899-1915 was chosen for study for a number of reasons. First of all, it is a period which is very poorly-known from both the instrumental and macroseismic point of view ; secondly, it is the earliest period for which instrumental data are available, and thirdly, press reports for the period are more abundant than those of later years in information that may be used to supplement other seismological data.

DATA AND METHOD OF ANALYSIS

In preparing this survey of the seismicity of Turkey and neighbouring regions ($34^{\circ} \mathrm{N}$ to $42^{\circ} \mathrm{N}$ and $26^{\circ} \mathrm{E}$ to
44° E) (fig. 1) between 1899 and 1915 , we have made it a priority to rely as much as possible on primary sources in which the macroseismic and instrumental data are treated in their regional context. At the outset of the survey, we began with a number of earthquake catalogues covering the period (Sieberg, 1932a, b; Pinar and Lahn, 1952; Ergin et al., 1967 ; Öcal, 1968 ; Kárník, 1968, 1971) : it quickly became clear that such secondary works as are available have many shortcomings and lack the rigorous approach necessary to clarify the true seismicity pattern of the region. By taking them as our starting-point, however, we intended to improve on them by removing errors and misinterpretations.
For each earthquake listed in these catalogues we prepared a worksheet, and to each worksheet transferred all pertinent data and references cited. It at once became obvious that the basic information in Ergin et al. (1967) and Kárník (1968) is drawn from Öcal (1968) which, in turn, borrows from Sieberg (1932a, b) and Pinar and Lahn (1952) among others. However, there is no easy way of checking the information in Öcal (1968), Sieberg (1932a, b) and

Figure 1
Map of the northeast Mediterranean region under study ($34^{\circ} \mathrm{N}$ to $42^{\circ} \mathrm{N}$ and $26^{\circ} \mathrm{E}$ to $44^{\circ} \mathrm{E}$), i.e. Turkey, Cyprus, northern Syria, Lebanon, Iraq, frontiers of Iran and the USSR. The map shows the location of the larger earthquakes $\left(M_{s} \geqslant 6\right)$ of the period 1899-1983. Numbers refer to the last two figures of the year in which a particular earthquake occurred. A implies $8.0>M_{s} \geqslant 7.5 ; \mathrm{B}: 7.5>M_{s} \geqslant 7.0 ; \mathrm{C}: 7.0>M_{s} \geqslant$ $6.5 ; \mathrm{D}: 6.5>M_{s} \geqslant 6.0$.

Pinar and Lahn (1952) since these authors do not, in general, give their sources.
As Öcal (1968) explains in his introduction, his survey is based on various materials which he had to hand, as well as on material which he retrieved while at the Geophysical Institute in Jena: the latter comprises data from seismographic stations in particular. Although Öcal indicates the source of his information for each event by means of a number which refers to an item in his bibliography, this bibliography was omitted when his catalogue was published and it is therefore impossible to ascertain his sources or to check the entries in his catalogue.
The situation is little better in the case of Pinar and Lahn (1952). Here, sources of information are various, and include oral information collected from site visits, information obtained from the records of the Ministry of Public Works in Ankara (Bayindirlik Bakanligi), French- and Turkish-language newspapers published in Istanbul, and a number of foreign and Turkish books and catalogues. In Pinar and Lahn's listing of each event, the source of information is given only in the most general terms, depending upon which of these broad groups it falls into, and so, again, it has not been possible to check the accuracy of the catalogue entries.
Sieberg ($1932 a, b$) gives no indication as to the sources of his information, which similarly prevents further checking.

In order to resolve the ambiguities arising from comparison of existing catalogues, and to improve the
regional cover for earthquakes during the period of interest, additional data were transferred to the worksheets for individual events.
First of all, information from the Reports of the British Association for the Advancement of Science (BAAS) and the Shide Circulars, the forerunner of the International Seismological Summary (ISS), were assessed in this way. These early instrumental locations were based on observations reported mainly from undamped seismographs, often with uncertain timing, and in a period when knowledge of seismic velocities and travel times was very poor: these factors often resulted in epicentral locations with gross errors, which need correction. In fact, the only relatively reliable epicentral locations in BAAS are those which have been adopted without calculation, on the evidence of damage observations (Milne, 1909, $1911 b, 1912,1913$).
A comparison of common events in Öcal (1968) and BAAS shows that the former has included in his catalogue nearly all early instrumental determinations listed by BAAS, to which he then added the name of the town nearest to the epicentre. This form of presentation gives the false impression that the epicentre of the event had been assessed from macroseismic observation, which is not true in most cases.
Secondly, data from Fitzner (1903), Milne (1911a), Ballore $(1906,1924)$ and Gutenberg and Richter (1965) were transferred to the worksheets: this showed them to have been a source for both Pinar and Lahn (1952) and Öcal (1968), which left about 60% of the latters' primary sources to be identified.

The procedure followed with the double purpose of identifying Pinar and Lahn (1952) and Öcal's (1968) outstanding primary sources and of retrieving additional data on the seismicity of the area required the careful reading of a number of newspapers for the period 1899-1915. In particular, the set of the daily Levant Herald, published in Istanbul, Hestia (Athens) and Amaltheia (Izmir) were searched; these were supplemented by Stamboul (Istanbul), Neologos (Istanbul) and Makedonia (Thessaloniki) for certain events. Further, some other Greek, Bulgarian, Russian and English papers gave occasional details of the more damaging events in the region. These newspapers provide more or less continuous coverage for the period 1899-15; however, it should be noted that reporting of the momentous political events of the latter years of the period took precedence over the reporting of smaller earthquake shocks, which renders the coverage somewhat uneven.
When such press information was entered into the worksheets the number of seismic events for the period of observation increased by a factor of 6 : press reports provided useful and detailed information for the more important events, and also revealed the existence of a number of relatively large shocks which were previously unknown. With the exception of erroneously- or incompletely-dated events, that is, events which were assigned the date of publication of the news or listed under the month of their occurrence only, almost all entries in Pinar and Lahn (1952) and Öcal (1968) were found mentioned in some form in the press. A check of all entries in Öcal also disclosed a number of mislocations of events, in which the geographical coordinates assigned by this author to the epicentral region mentioned in the press referred to a different locality of similar name in Turkey, or to a locality in Turkey at which a large distant earthquake with an epicentre outside the area of study was felt. In spite of these drawbacks, however, Öcal's catalogue remains, in the number of its entries, the most complete for the region.
Into this improved data set, purged of spurious and erroneous events, a separate larger body of information could then be incorporated. This consisted of all instrumental and macroseismic information contained in station bulletins of the time and in special seismograph station publications, i.e. Rudolph (1905), Oddone (1907), Tams (1908a, b). Christiansen and Ziemendorff (1909), Scheu (1910a, b; 1911), Szirtes (1909, 1910, 1912a, b; 1913), Scheu and Lais (1912), Sieberg (1917).
Table 1 is a conspectus of those seismograph stations operating throughout the world during the period 1899-1915 for which we have access to their weekly, monthly and/or annual bulletins. Weekly, monthly and annual reports all contain information about the onset times of the different phases recorded and the corresponding amplitudes and periods, data which were extracted and transferred to the appropriate worksheets for use in the relocation of the event and for the assessment of its magnitude. The monthly reports are usually more detailed than the weekly reports and occasionally include information regarding felt reports and damage descriptions, as well as
supplementary information derived from private correspondence between the stations and European consuls near to the affected area.
Finally, the Ottoman newspapers Ikdam and Sabah and a number of provincial weekly newspapers (vilayet gazeteleri) of the period 1899-1915 were read. Rather few of the latter are still extant : those which are, however, proved to be a most valuable source of detailed local information. Thus, the Ottoman and foreign newspapers which have been read provide a continuous coverage for the period of interest ; territorially, coverage is also more or less complete, with Greek and Russian newspapers providing information for the western and eastern parts of the region respectively. While newspapers are the most important and exhaustive source of macroseismic information, additional details on the larger events were sought in the consular and diplomatic correspondence held at the Public Record Office (PRO) : except for the larger events before 1913, these were only rarely to be found. Together with information obtained locally from field trips between 1965 and 1971, relatively full coverage of earthquake occurrences during the period of interest has been established. The results of such analysis of each event are shown in table 2 which thus constitutes the earthquake catalogue for the period studied.

MACROSEISMIC INFORMATION

Dating of events

Together with the Gregorian calendar, the calendars in use in the Ottoman Empire during the period 18991915 were the fiscal solar calendar, locally known as rumi or mal \hat{l} - which is the Julian or Old Style calendar (O.S.) - and the Islamic lunar calendar, known as hijrî. The head of both provincial and Istanbul newspapers carried the date in one or more of these calendars as well as in the Gregorian or New Style (N.S.) calendar. However, individual news items within the papers - in our case, the reporting of earthquake occurrences - were usually found to be headed according to O.S. : this was not often explicit, but in the majority of cases was clear from the provision of additional information such as the day of the week on which the event occurred. (The Gregorian calendar was officially adopted in Bulgaria in 1916, in Russia in 1918, in Greece in 1922, in Yugoslavia in 1924 and in Turkey in 1926.) For the nineteenth century, and until 1 March 1900, 12 days must be added to the O.S. date to obtain the Gregorian or N.S. ; thereafter, 13 days are added, with local variations of one day arising because the Islamic day starts at sunset on the previous evening. During the period of our interest, the foreign language press of Istanbul, Izmir. Athens and other cities of the eastern Mediterranean reported local earthquake occurrences in N.S., but occasional errors in conversion from other calendars have been noted.
Throughout the present catalogue (table 2) dates are given in N.S., and times are shown in G.M.T., that is Istanbul civil time minus two hours. However, for a number of small local shocks reported by the press it
has not been possible to define unequivocally the date of the event in N.S. The reason for this is that it is not invariably obvious from the context which calendar is being used, nor whether the day of occurrence of a given event is that of the week of issue of the newspaper or of the previous week. Such ambiguities may only be resolved when the same event is dated by different newspapers in different calendars. The dating of larger earthquakes rarely presents a problem, since, in most cases, these were widely reported in the press and were also recorded by seismograph stations.
A final difficulty which can arise is in the determination of the time of an earthquake. As mentioned above, the Islamic and the European day do not correspond. Whereas the European day is reckoned from midnight to midnight, the Islamic (and thus the Ottoman) day begins at sunset : a Thursday evening of the European calendar was therefore reckoned as the start of Friday by Ottoman timekeepers, for instance. This problem of dating is further compounded by the fact that the Ottoman day began at different times across the region, the time of sunset being later in the west than in the east (King, 1980).
In view of these difficulties in ascertaining the precise date and time of earthquakes, especial effort has been made not to duplicate events: therefore, although the time of some of the events of very small magnitude in our catalogue may be in error, this has not resulted in duplication.

Assessment of intensity

Information on observed effects for use in evaluating intensity in the MSK (Medvedev-Sponheuer-Kárnik) scale was obtained mainly from original sources, some of which are listed in the appended bibliography; isoseismal maps of varying levels of detail were constructed for a considerable number of earthquakes for which there is sufficient information for this to be possible. Some of these maps are presented in this paper, and as can be seen from Ambraseys and Finkel (1986), there is precious little in the form of such maps for the period under investigation.
In order to assess the intensity of individual events on the MSK scale, study of well-reported events resulted in conclusion as to whether a shock reported in a particular locality was slight or felt, sharp or strong, severe or very strong, violent or very severe : intensities of III, IV, V and VI were assigned respectively. In most cases there was additional information that could help in determining the intensity of an earthquake using the criteria in the MSK scale ; secondary effects such as faulting, landslides, soil failures, and casualties were excluded since they are of limited value in assessing intensity.
For small or poorly-documented earthquakes, isoseismal radii r_{i} have been calculated by taking the average epicentral distances to locations of similar intensity. For the larger earthquakes, however, r_{i} values in table 2 have been computed from isoseismal maps of varying levels of detail. In assigning values to intensities $I \leqslant I V$, great care has been taken to account for negative reports and for effects attributable to extre-
mes of population density wherever this was possible. We have avoided the use of the radius of perceptibility r_{0}, vaguely defined as the distance up to which a shock was felt, and have instead used the radii for intensities II and III (MSK) explicitly.

Location of macroseismic epicentral regions

Data provided by the available macroseismic sources are generally adequate to permit relatively accurate location of the epicentral regions of earthquakes during the early part of this century. Even when there is no apparent indication of the epicentral region and no evidence of serious damage at any one of the various locations reported to have been affected, the location of the epicentral region may be estimated fairly closely: for small-magnitude events, that is where a shock was felt over a relatively small area. any instrumental location will result in errors much greater than the radius of the highest isoseismal, and so the epicentre may, with few exceptions, be determined more accurately from macroseismic information than from instrumental data for this early period.
On the other hand, for larger events, that is for earthquakes with relatively large felt areas, it is always possible to identify those localities of serious damage that define a more limited epicentral area, except when these encompass mountainous or sparse-ly-populated zones. Also, for the larger events it is always possible to ascertain the probable location of a macro-seismic epicentre from instrumental observation. However, it is very often the case that the available macroseismic information is inadequate to permit accurate assessment of the epicentral intensity and of the isoseismal of maximum intensity, so that the epicentral region of a relatively large shock is usually located with a margin of error comparable to the radius of the highest isoseismal available. The methodology used to determine epicentral regions is that developed for the study of the seismicity of Iran (Ambraseys and Melville, 1982). In most cases, then, the use of macroseismic data results in greater accuracy in the location of the epicentral region of an earthquake of the first half of this century in the eastern Mediterranean region than that allowed by instrumental estimates (Ambraseys, 1978).

Description of earthquake effects

This section deals with the felt effects of some of the larger events of the period. For earthquakes for which there is published information the annotation is kept as brief as possible, and we have added all pertinent references. (Information in station bulletins of the time (table 1) - particularly those of Russian, Italian, German and Austro-Hungarian stations - is too extensive to quote in detail, as is information in the local press : the latter is thus collectively cited as Press Reports. With few exceptions the detail provided by press reports, consular correspondence and notices in station bulletins is far superior to that found in published technical reports.) Place-names are those of the time of the earthquake, or in the original sources of information, and no attempt has been made to give

Figure 2
Isoseismal map of the Menderes earthquake of 20 September 1899, $M_{s}=6.9$. Larger dots indicate sites at which the intensity reached or exceeded VIII (MSK). Small dots show localities at which smaller intensities may be assessed. The data are insufficient to construct a more detailed isoseismal map.
corresponding modern names : the location of some settlements has shifted, and others have disappeared altogether. The isoseismal maps that accompany this paper show a selection of the places affected (figs. 25). Location accuracies for the early maps used to locate the sites affected by the earthquakes described here vary for different parts of the region and they are not better than a fraction of a kilometre to a few kilometres for the central and southeast parts of the region. A list of these maps is given in the bibliography.

1899, September 20 ; Menderes valley (fig. 2) $M_{s}=$ $6.9, I_{0}=\mathrm{IX}$.
A destructive earthquake in the Menderes valley. Sultanhisar, Atca, Nazilli, Kuyucak, Sarayköy, Denizli and Karacasu appear to have suffered more than other places. In Denizli, 55% of the houses were completely destroyed. The havoc wrought at Nazilli was as great: the old town was totally ruined, together with Forbes' liquorice factory and all public buildings ; in the new part of the town, half the houses were ruined by the shock and the ensuing fire. In Sarayköy, the very few houses that survived the shock were consumed by fire. Damage was less serious in Aydin except in the Turkish quarter where a few hundred houses collapsed, together with two minarets of the Great Mosque, the chimney stack of Atkinson's machine factory and a number of churches and synagogues. The shock caused considerable damage to the railway line east of Aydin, towards Çal and

Denizli: embankments slumped, leaving rails suspended 2 metres in the air and bridges were damaged at Balikdere, Gencelli and Karatas near Sarayköy. Telegraph communications were also interrupted east of Aydin, the poles supporting wires east of Kuyucak and Gencelli having collapsed. The shock triggered many landslides, one of which destroyed Ortakçi, which was abandoned ; Kemer and its nearby bridge, and sites west of Çine were also damaged by slides. Liquefaction-induced ground failures were reported from throughout the Menderes valley, particularly from near Koçarli, Sahinli and from as far as Cellat. Long-period effects were experienced in Izmir, Muğla and Işikli, where a minaret was damaged, and the shock was felt as far away as Thrace, Marmara, Eskişehir and Rhodes. Small aftershocks, mostly in the western part of the epicentral region, and some locally damaging, continued well into 1900. The earthquake killed 1117 people and injured hundreds more ; it destroyed 7126 houses and damaged a further 8756 .
Recent field-study by Allen and Sipahioglu suggests that the earthquake was associated with normal faulting along a Quaternary break that extends from west of Aydin to east of Nazilli. Our field-studies confirm the existence of such a break that can be followed on the ground from near Ömerbeyli, passing through Kizilcali, very near Ilica, Umurlu, Baklaköy, Eskihisar, Atça, Dalca, Arslanli to Kuyucak, for a distance of 70 km with the south side downthrown by as much as 3 m . They also suggest that the whole
length of this fault and its extension west of Ömerbeyli broke in the large earthquake of 23 February 1653, but that in 1899 only the segment east of Umurlu to near Sarayköy was involved in faulting, with the south block downthrown by less than 1 m .
Press Reports ; Anonymous (1899) ; Vincenz (1900) ; Anonymous (1900); Schaffer (1900); Cancani (1900) ; Sieberg (1932b) ; Pinar and Lahn (1952) ; Allen (1975) ; Sipahioglu (1979).

1900, July 12; Kağizman $M_{s}=5.9, I_{0}=$ VIII.
A locally destuctive earthquake ruined dozens of villages in the region between Kars, Karakurt, Kagizman and Digor. Maximum damage was observed in a narrow zone running from Kagizman in the south, through Pasli and Karakilise in the north, within which landslides added to the damage. There were numerous, strong aftershocks. The earthquake killed 140 people, destroying 1100 houses and damaging 900.

Press Reports ; Debitski (1900) ; Levitski (1901) ; Byus (1948).
1901, March 31; Balchik $M_{s}=6.4, I_{0}=$ VIII (${ }^{*}$).
This earthquake had an offshore epicentre in the Black Sea near Varna. Maximum damage was sustained by a small number of villages situated on the alluvial low-lands along the coast between Balchik, Kavarna, Blatnitsa and Limanu. Slumping of the coast destroyed many landing-places and coastal settlements including the lighthouse at Kaliakra. Largescale landslides along the coast continued to develop for almost two weeks after the earthquake, disrupting communications and causing additional damage. The shock was felt throughout Bulgaria, southeast Romania, eastern Serbia and northwest Anatolia, causing great panic in Istanbul and on the Asiatic coast of the Bosphorus and the Marmara. Longperiod effects lasting about a minute were reported from the Danube valley, from Szeged in Hungary, and from Odessa. The shock was perceptible in Saloniki, in Macedonia, in Dorohoi in Romania, and throughout the province of Sivas. Aftershocks continued until the end of July. The earthquake killed 4 people and injured $50 ; 1200$ houses were destroyed. Press Reports ; Cancani (1902) ; Gelescova (1902) ; Fitzner (1903) ; Watzov (1903) ; Mihailovic (1911) ; Popescu-Cernauti (1938, 1939) ; Réthly (1952) ; Florinesco (1958) ; Grigorova and Grigorov (1964).
1901, November 8; Erzurum $M_{s}=6.1, I_{0}=$ VIII.
Preceded by a series of foreshocks, an earthquake in the vicinity of Erzurum rendered 10000 people homeless. Damage was confined in the region between Hasankale, Hins and Erzurum, but the shock was very strongly felt in Kiḡi, Hinis, Sarikamiş and Aşkale. Many buildings in Erzurum were almost totally destroyed, including the military hospital, the prison, the courts of justice, the Armenian church and two Greek schools. Aftershocks, some of them damaging, continued to be felt in the region for eight months. No one was killed, but about 2000 houses were damaged beyond repair.
Press Reports ; PRO (1901).

1901, December 18 ; Ayvalik $M_{s}=5.9, I_{0}=\operatorname{VIII}\left({ }^{*}\right)$.
A damaging earthquake with an offshore epicentre in the Gulf of Edremit. Hundreds of houses were rendered uninhabitable in Ayvalik and on Mosko Is. ; the church of St. George and a school were badly damaged. Damage extended to Pelle, Dağlar, Assos and to the island of Chios. The shock was felt in Istanbul, Bursa, Aydin and Samos.
Press Reports.
1902. March 9; Çankiri $M_{s}=5.5, I_{0}=$ IX.

An earthquake with an epicentre near Korgun, preceded and followed by strong shocks, caused great destruction to the town of Çankiri and to nearby settlements : the 3000 houses of the town were almost totally destroyed. 4 people died and over 100 were injured. The shock was widely felt in central Anatolia. Press Reports ; Lysakowski (1902).

1903, April 28 ; Patnos $M_{s}=7.0, I_{0}=\mathrm{X}$.
This earthquake, with an epicentre north of Lake Van, almost totally destroyed about 120 villages within a radius of 30 km , causing great loss of life. In the town of Malazgirt the military hospital and what remained of the city walls were utterly destroyed, while here and in Patnos, houses, mosques, churches and mills collapsed. Among those who perished were the commander, officers and men of the garrison at Malazgirt. Nearby villages were levelled with the ground, and about 20000 animals perished. The shock, which lasted some 60 s , was felt throughout eastern Anatolia; it was not preceded or followed by any strong shocks, except for one damaging aftershock on 6 August, which had an epicentre between Gop and Malazgirt : this killed a number of people. The main shock killed 3560 and injured hundreds; 12000 houses were completely destroyed.
Press Reports ; PRO (1903) ; Rudolph (1905) ; Levitski (1908) ; Tams (1908a, b) ; Sieberg (1932b) ; Byus (1948) ; Tchalenko (1977).

1903, May 28 ; Ardahan $M_{s}=5.8, I_{0}=$ VIII (?).
A destructive earthquake in the Göle region, south of Ardahan, ruined a number of villages between Varginis, Çardahli and Mehkerek. This earthquake is alleged to have killed over 1000 people.
Press Reports ; Levitski (1905) ; Byus (1948).
1904, August 11; Samos $M_{s}=6.2, I_{0}=\operatorname{VIII}\left({ }^{*}\right)$.
An earthquake with an epicentre off the south coast of Samos caused widespread damage to the island. The main shock and its violent aftershock destroyed a number of farming settlements and the monastery of St. Triada, and triggered rockfalls that blocked the roads along the south coast of the island. Damage extended to the island of Patmos and to the Anatolian coast west of Söke. The shock was strongly felt as far as Santorini, Chios, Menemen, Ödemis, Aydin and Chalki Is., off Rhodes. 4 people were killed and 7 injured, and 540 houses on Samos were totally destroyed.
Press Reports ; Eginitis (1909) ; Sieberg (1932a, b) ; Galanopoulos (1955).

1905,, October 21 ; Sukhumi $M_{s}=6.5, I_{0}=\operatorname{VI}\left({ }^{*}\right)$.
A relatively large-magnitude earthquake followed by an almost equally large aftershock was widely felt in the western Caucasus. Maximum intensities of not more than VI (MSK) were observed on the Black Sea coast at Sukhumi, Batum and Trabzon, suggesting an offshore epicentre associated perhaps with the much smaller event of 4 October which triggered a large seismic sea-wave that flooded the coast. Long-period effects were reported from great distances.
Press Reports; Yaroslavtsev (1929); Byus (1941, 1948).
1905. December 4; Malatya $M_{s}=6.8, I_{0}=$ IX.

An earthquake in the Şiro Çayi valley southeast of Malatya destroyed many villages between Pütürge and Çelikan with great loss of life. Damage extended to the southwest as far as Rumkale and to the plain of Malatya, where, near Izoli, the shock caused widespread liquefaction in the valley deposits of the Euphrates. Two closely-spaced aftershocks caused additional damage in the region of Abdülharab.
Press Reports ; Sieberg (1932a, b) ; Pinar and Lahn (1952) ; Plassard (1960).

1909, January 19 ; Foça $M_{s}=5.8, I_{0}=$ IX.
A damaging shock with an epicentre in the region between Foça, Menemen and Güzelhisar caused the collapse of hundreds of houses within a radius of 15 km . The earthquake was not preceded or followed by any noticeable shocks, but it was very widely felt, as far as Dedeağaç and Piraeus. The shock triggered liquefaction in the flood plain of the Gediz river. The
earthquake destroyed 700 houses and damaged 1000 , and killed 8 people.
Press Reports ; Watzov (1911) ; Eginitis (1912).
1909, February 9 ; Enderes (fig.3) $M_{s}=6.3, I_{0}=$ IX.
An earthquake followed by strong aftershocks caused extensive damage in the region between Zara, Ipsala, Koyulhisar and Enderes causing the destruction of many houses and the loss of some lives. The shocks were associated with ground ruptures in the vicinity of Karabayir, about 15 km south of the North Anatolian surface faulting of 1939 , running discontinuously for several kilometres in an east-west direction, from Ipsala, along the north bank of the Tozanli Çayi, and crossing the Enderes-Zara road north of Köse Dag. Their continuity and total length of about 15 km suggests tectonic origin. but we could find no conclusive field evidence for surface faulting. Ground fractures were also reported from further east, at Ezbider, while hot springs appeared at Yenice, and landslides, mainly due to aftershocks, blocked the Karaçam and Habes passes to the south. The shock was strongly felt in Giresun, Tokat, Sivas and Kemah and it was perceptible as far as Kirsehir, Harput and the Caucasus.
Press Reports; Riggs (1909a, b) ; Lysakowski (1910) ; Sieberg (1932b) ; Byus (1948).
1909. October 29; Karamürsel $M_{s}=5.8$, $I_{0}=$ VII (${ }^{*}$).

Two shocks of almost the same magnitude, occurring in succession, caused widespread damage in the mountainous region of Koglacik between the Gulf of Izmit and Lake Iznik. These earthquakes destroyed a

Figure 3
Isoseismal map of the Enderes earthquake of 9 February 1909, $M_{s}=6.3$. Larger dots indicate localities where the shock attained intensities greater than VII (MSK) and caused considerable damage. Sub-districts (nahiyes) reported to have been affected by the shock are shown in heavy capitals. (Karabayir is located between Ortaköy and Enderes.)

number of houses and churches; they were strongly felt at Çatalca, Terkos, Istanbul, Göynük, Bolu and Bursa, and were perceptible in Izmir, Gediz, Kütahya and southeast Bulgaria.
Press Reports; Riggs (1909a); Watzov (1911); Eginitis (1912).

1910, June 25 ; Osmancik $M_{s}=6.1, I_{0}=\operatorname{VII}\left({ }^{*}\right)$.
Preceded by a widely-felt foreshock, an earthquake in the North Anatolian fault zone caused considerable damage in the region between Hacihamza, Osmancik and Iskilip. The foreshock was felt mainly to the north of the epicentral region, between Sinop, Samsun and Çankiri, while the main shock was felt to the south as far as Kirşehir, Ankara and Yozgat.
Press Reports.
1912, August 9; Saros-Marmara (fig. 4) $M_{s}=7.4$, $I_{0}=\mathrm{X}$.
A catastrophic earthquake in southeast Thrace destroyed 310 villages and towns and heavily damaged 272 other settlements making a total of 83633 people homeless. The main shock, followed in places by fire, its strong aftershocks and landslides, destroyed 313 churches and mosques and almost all public buildings within a radius of about 100 km . The earthquake was associated with a $50-\mathrm{km}$ long surface fault-break, of a normal nature with a considerable right-lateral strike slip component that showed displacements up to 3 m .

Liquefaction of coastal, river and lake deposits was observed in the epicentral region as well as at distances up to 200 km . The shock killed 2836 people and injured 7353 ; it destroyed 24980 houses and damaged a further 15000 .
Ambraseys and Finkel (1987).
1914, May 28 ; Gemerek $M_{s}=5.6, I_{0}=$ VII (${ }^{*}$).
A series of damaging shocks ruined a considerable number of houses and public buildings at Gemerek and nearby villages along the Kizilirmak. The main shock was strongly felt as far as Tokat, Sivas, Aziziye and Kayseri, and it was perceptible on the Black Sea coast as well as at Ladik, Herek, and Niksar.
Press Reports.
1914, October 3 ; Burdur (fig. 5) $M_{s}=7.0, I_{0}=$ IX.
A destructive earthquake centering on Lake Burdur killed more than 4000 people. The damage caused by the shock and the fire that followed was very great : more than 17000 houses were destroyed within a northeast trending zone about $90-\mathrm{km}$ long and $30-\mathrm{km}$ wide defined by Duvar. Yasiköy, Ilyas, Kilinç, Gönen and Barla. In Burdur. 90% of the houses together with most of the historical monuments and the 20 m high clock-tower were destroyed. Kilinç was levelled with the ground and Keçiborlu lost 85% of its houses. In Isparta 55% of the houses, the Great Mosque and other public buildings collapsed. Damage and casual-

Figure 4
Isoseismal map of the Saros-Marmara earthquake of 9 August 1912, $M_{s}=7.4$. See Ambraseys and Finkel (1987, fig. 5) for details.

Figure 5
Epicentral region of the Burdur earthquake of 3 October 1914, $M_{s}=7.0$. Larger dots show places of VIII (MSK) or greater. Dotted lines show railway line which was damaged at a number of unspecified points. Data are barely sufficient to allow reliable plotting of the isoseismals.
ties extended to Egridir, Dinar and to other villages within a radius of 60 km . There was damage to the Dinar-Egridir section of the railway line and to many villages as far as Denizli, Bolvadin and Antalya.
Although no clear-cut fault displacement has heretofore been documented in association with this event, the permanent submergence of the southeast coast of Lake Burdur for a length of 23 km , reported immediately after the event, suggests that significant surface faulting of a normal nature had occurred along this part of the shore, striking $\mathrm{N}-45^{\circ}-\mathrm{E}$ with the northwest (lake) side downthrown by as much as 150 cm . The main shock was followed by a brief sequence of small magnitude aftershocks.
Press Reports ; Pinar and Lahn (1952).

INSTRUMENTAL INFORMATION

Network of seismograph stations

Instrumental recording of earthquakes in the northeast Mediterranean area began late in the last century and continued for some time with instruments which operated in Europe and which were very imperfect by modern standards. In the early years of the period 1899-1915 most of such instruments were undamped, short-period, low-magnification pen-recorders, intended for the recording of local earthquakes. They were not capable of precision in the timing of an event. In the following years there was a rather rapid increase in the number of stations equipped with better recording instruments, i.e. medium-period, slightly- to critically-damped mechanical or electromagnetic seismographs which recorded photographically with magnifications in excess of 1000 .

Berlage (1932) contains a description of the various instruments in operation during this early period.
Figure 6 is a chronological conspectus of the seismological observatories in operation throughout the world in the period 1899-1915. The information used to construct this figure is given in table 1 , which summarises the main characteristics of each operating station and the change over time. Table 1 lists all seismic stations, worldwide, which were operating during the period 1899-1915. It shows which stations were in operation at any particular time, the operating frequency and gain of the seismographs of each station, and whether the station bulletins report traceor ground-amplitudes of the different phases of the earthquake recorded by the seismographs. Entries for a particular station and year show the magnification of the most modern seismograph of the station (first character), the average period of the instrument (second character), whether the station bulletin contains information about recorded amplitudes (third character) and periods of different phases (fourth character). Lower-case characters imply that the instrument is undamped or slightly-damped and that the amplitude reported is trace-single or -double amplitude. Upper-case characters signify damped instruments and ground amplitudes. Where one or more characters are missing from the four-character entry, it implies that the bulletin for the year in question omits that particular piece of information. Asterisks indicate years for which we have been unable to retrieve the available station bulletins. A plus-sign (+) indicates that a particular year has been incompletely reported in the station bulletins.
Although instrumental recording was only just beginning in the early part of this century, with insensitive instruments with uncertain timing, and with only poor

Figure 6
Cumulative distribution of the number of stations, N_{s}. operating during a particular year of the period 1899-1915 as a function of their geocentric distance from Turkey, D^{0} (taken from $39^{\circ} \mathrm{N}-35^{\circ} \mathrm{E}$). Notice the shape of these curves which show the non-uniform distribution in space of the worldwide network of the time, with 65% of the total number of stations in operation located at distances less than 30° from Turkey. Notice also the rapid decrease in the number of stations afier 1911; this is partly compensated for by the introduction of more sophisticated instruments (cf. table 1).
knowledge of earthquake travel times, there is a vast amount of instrumental data for the period that is capable of being analysed but which has hitherto been neglected. From figure 6 we notice that the number of seismographic stations worldwide stood at 149 by 1911, with more than 200 instruments in operation, and with a very rapid increase in the number of stations equipped with proper recording instruments (table 1). During the decade after about 1911 the amount of available seismographic information begins to fall off, particularly because of the First World War. However, it was the drastic discontinuity in regular reporting of events rather than the closure or suspension of stations which caused the decrease in information during these years, and although it is certainly the case that many station bulletins of the war period were not published or widely-distributed, in a number of stations the original bulletins are still extant in manuscript form. Local station bulletins, such as those of the Caucasus network, of Ksara in Lebanon, of Athens, and of Harput in eastern Turkey, contain valuable instrumental and occasionally macroseismic data which help in the assessment of the location and magnitude of even relatively small earthquakes in the region. In particular, it is hoped that the retrieval of the seismographic station bulletins of the schools of Sacré-Cœur in Izmir and of St-Benoit in Istanbul, which cover the period of our present interest, will add to our knowledge of the local seismicity of the region.

Instrumental location of epicentres

During the years 1899-1915 the BAAS and certain seismograph stations in Russia and Germany published a number of epicentral locations of the larger shocks of the period, macroseismic information often being used to supplement the instrumental in order to determine the approximate position and time of origin of a seismic event. The use of macroseismic data ensured that such determinations were reasonaly accurate ; when macroseismic data were not available however, as was the case for many of the smaller shocks. the instrumental epicentres are sometimes found to be in gross error.

Accordingly, we have re-examined the early instrumental locations in the present area of study and in a few instances have added new, reasonably accurate determinations. Such re-locations depend heavily on observations from European stations, which subtend only a limited range of azimuth for events in the northeast Mediterranean. Unfortunately, very few stations operated in other quadrants throughout the period, but readings from Russian stations provide a measure of control.

Early BAAS locations were based on observations reported from undamped seismographs. The Milne instruments mainly recorded surface waves, and the early bulletins report the onset of these and the time of maximum amplitude. Only occasionally are "preliminary tremors» of body-waves reported, and these are of doubtful interpretation. Following a technique used by Ambraseys and Adams (1986) we found that consistent locations could be obtained by assuming that the reported maximum phase travelled with a velocity of about $2.85 \mathrm{~km} / \mathrm{s}$: this would correspond to an Airy phase in continental propagation. Slightly different values were taken for different events. A similar technique was used by Abe (1985) to determine origin-time and magnitude for earthquakes of this period with known locations in other parts of the world. By means of a simple graphical procedure on a globe, we could generally obtain a solution estimated to be accurate to within 2° to 5°. Some events were confirmed close to the original BAAS location but others were found to have been grossly mislocated. The reading of body-phases taken from station bulletins for the later part of the period, by which time more sensitive, damped instruments had been installed widely in Europe, sometimes allowed the identification of $P-, P P$ - or S-phases, which in turn permitted greater accuracy in origin times and confirmed the epicentral locations derived mainly from surface-wave maxima or from macroseismic observation.

Nevertheless, the accuracy of instrumental locations remains very poor throughout the period and is certainly inferior to that with which epicentres may be ascertained from macroseismic data. This is particularly true for small, poorly-recorded events. Consequently, macroseismic location of epicentres has been preferred to instrumental, except where events occurred offshore or in areas of sparse population (table 2).

REVISION OF MAGNITUDES

Effective magnitude assessment of earthquakes in Turkey begins in 1902 with the recordings by Wiechert instruments at Potsdam, and the number of stations reporting ground-amplitudes and periods increases rapidly with the addition of Jena, Leipzig, Strasbourg, Uppsala and other reliable stations.
For the period 1899-1915 the number of earthquakes in the northeast Mediterranean region for which magnitudes are reliably known is very small indeed : the magnitudes available for the period are either non-homogeneous or else it is not clear how they were derived. In our study, therefore, individual surfacewave magnitudes were calculated using the standard procedure put forward by the IASPEI Commission on Practice (Willmore and Kárnik, 1971) and the method described in Ambraseys and Melville (1982). The most appropriate formula is :

$$
\begin{equation*}
M_{s}=\log (A / T)+1.66 \log (D)+3.3+C_{i} \tag{1}
\end{equation*}
$$

where (A / T) is the maximum value of the ratio of the ground-amplitude A of the surface-wave group in microns, and T the corresponding period in seconds. D is the focal distance in degrees and C_{i} is the station correction.

Almost all estimates of M_{s} were made from $L H$ amplitudes, which constitute the bulk of the available information. In the few cases of amplitudes recorded at relatively short distances by stations such as Athens, Harput and Tiflis, these were treated as $L g(S g)$-phases.
Body-wave magnitudes were estimated using Gutenberg's distance-depth factor $Q(D, h)$ for distances in excess of 15°, i.e. from

$$
\begin{equation*}
m=\log (A / T)+Q(D, h) \tag{2}
\end{equation*}
$$

and for whichever phase amplitude-period data were available. We combined magnitude estimates from $P H$-, SH- and $P V$-phases and took an average for body-waves in which PH -phases dominate.
Errors in the estimates of surface-wave magnitudes are relatively small, and the mean of the standard deviation of the M_{s} values of 83 events, without station corrections, is 0.3 (± 0.15) units of M_{s}. With station corrections, the values of which are shown in table 2, the standard deviations were reduced to $0.2(\pm 0.10)$ and their effect on M_{s} estimates is small except for those events recorded by a small number of stations, that is, for small-magnitude events.
The station correction C_{i} is defined by

$$
\begin{equation*}
C_{i}=\left(M_{n}-M_{i}\right) / n \tag{3}
\end{equation*}
$$

where M_{i} is the magnitude of a particular earthquake at a particular station i, and M_{n} is the average value of the magnitude of the same event estimated from a number of stations; n is the total number of earthquakes for which M_{n} and M_{i} estimates are available. Table 3 summarises the station corrections C_{i}, the number of earthquakes available for the northeast Mediterranean region (n) and for a much larger area
that includes the Balkans and $\operatorname{Iran}\left(n_{0}\right)$, used to estimate C_{i}, and the standard deviation ($d C$). For a number of stations C_{i} was found to vary erratically with time, this fluctuation being associated with either the improvement or replacement of seismographs and also with changes in the accuracy of the reporting of amplitude-period data. The resulting values of C_{i}, shown in table 3, are fairly consistent with those obtained by Kárník (1968).

Errors in the estimation of body-wave magnitudes are likely to be greater than those for surface-waves. This is mainly due to the lack of information concerning focal depths, which for most events are known only approximately, and also due to the small number of reliable stations reporting data at distance greater than 15°. The data available for the region and for the period of interest are insufficient to provide station corrections for body-wave magnitudes whose mean standard deviation, for 32 events, is $0.3(\pm 0.1)$ units of m.

The comparison of the calculated M_{s} and m magnitudes with those previously estimated by others for the period 1899-1915 is difficult, since only relatively few events during that period have been assigned magnitudes. The only body of information with which our M_{s} estimates may be compared is that in Kárnik (1968), repeated also in Shebalin et al. (1974): there was found to be hardly any difference between these two sets of estimates, Kárník's values being slightly higher. Gutenberg and Richter's (1965) few estimates of M_{s} during the period are also systematically higher than those which we have derived, by 0.3 units of M_{s}, a trend noted elsewhere (Ambraseys and Melville, 1982). It is worth mentioning that Gutenberg's notes and worksheets, which form the basis of the published work Gutenberg and Richter (1965), suggest that in assessing magnitudes he relied to a considerable extent on personal judgement, not only in his selection of data, but also in the way in which he combined the results from different phases to arrive at a final estimate of magnitude. For most of his calculations he used fewer stations than the number for which data were available at the time, omitting those considered by him to be unreliable. There are unfortunately no previous estimates of body-waves with which ours may be compared.
Thus it has been possible to assign M_{s} and m values to 118 and 47 events respectively, and to increase by a factor of 2.5 the number of earthquakes for which instrumental magnitudes may be uniformly determined. The magnitude of individual events, the standard deviation and the number of observations used are shown in table 2.
Magnitude determination in the early period 18991913 can be estimated from the maximum reported trace-amplitude of the Milne instruments, using a formula derived by Ambraseys and Melville (1982) which take account of the response of the undamped instrument to earthquakes of different magnitude :

$$
\begin{equation*}
M^{*}=\log (2 A)+1.251 \log \left(D^{0}\right)+4.06+C_{j} \tag{4}
\end{equation*}
$$

where $2 A$ is the peak-to-peak trace amplitude in
millimetres, D is the distance in degrees, and C_{j} is a station correction. This equation has been derived for events within an area of radius of about 25° from central Iran, that includes Turkey, and it is valid for magnitudes less than 7.7. A similar relation has been derived by Abe (1985).
Using equation (4) the value of M^{*} of 103 earthquakes was determined from 460 station magnitudes with a mean standard deviation of $\pm 0.3(\pm 0.2)$. For 67 of these 103 events we have also estimated the magnitude M_{s}, with station corrections, from equation (1). Consequently we may proceed to estimate the station correction C_{j} in equation (4) using the definition :

$$
\begin{equation*}
C_{j}=\left(M_{s}-M_{j}^{*}\right) / n \tag{5}
\end{equation*}
$$

where M_{s} is the corrected surface-wave magnitude of an event from equation (1), M_{j}^{*} is the station magnitude derived from the Milne amplitudes and equation (4) for the same event, and n is the number of earthquakes for which M_{s} and M_{j}^{*} estimates are available. Table 4 shows the station correction C_{j}, the standard deviation and the number of observations used, together with the station correction derived by Abe. It should be noted that the station correction derived by Abe (1985) is based on an equation similar to (3) rather than (5), reflecting the magnitude of the residuals from the average M^{*} rather than M_{s}. Nevertheless, his results are fairly consistent with ours.
Magnitudes M^{*} were obtained by averaging values calculated from individual Milne station readings, including the station correction C_{j}, and entered in table 2 which shows also the standard deviation and number of stations used. For corrected M^{*} values the mean of the standard deviation was reduced to $\pm 0.2(\pm 0.1)$, a value identical with that derived for C_{i}. A comparison between M_{s} and M^{*} for $n=67$ events for which both magnitudes are available, is shown in figure 7 , with a major-axis solution :

$$
\begin{equation*}
M_{s}=-0.66+1.10 M^{*} \tag{6}
\end{equation*}
$$

and $s=0.19$. Equation (6) was then used to correct further M^{*} and convert it into M_{s}, for those earthquakes for which no M_{s} determination was possible. This increased the number of events with known magnitude to over 150 .
We may now proceed to assess the surface-wave magnitude of shallow earthquakes in terms of I_{i} and r_{i}. This can be done by fitting the sets of I_{i}, r_{i} and the corresponding value of M_{s} or M^{*} in table 2 to an equation of the type
$M_{F}=a+b j^{-1} \sum I_{i}+c j^{-1} \sum r_{i}+d j^{-1} \sum \log \left(r_{i}\right)$
where j is the number of isoseismals available for the determination of the average value of the surfacewave magnitude of a particular event and a, b, c and d are the constants to be determined. Equation (7) was, in fact, fitted to 494 sets of values of M_{s} (or $\left.M^{*}\right), I_{i}$ and r_{i}, for shallow earthquakes in our region over the much longer period 1899-1986, with the

Figure 7
Comparison between standard surface-wave magnitudes M_{s} and magnitudes M^{*} determined from Milne instruments (eq. 4) for earthquakes in the northeast Mediterranean region, in the range $4.0 \leqslant M_{s} \leqslant 7.5$.
following results :

$$
\begin{align*}
& M_{F}=-0.53+0.58 j^{-1} \sum I_{i} \\
&+1.96 \times 10^{-3} j^{-1} \sum r_{i}+ \tag{8}\\
&+1.83 j^{-1} \sum \log \left(r_{i}\right)
\end{align*}
$$

and with a coefficient of determination of 0.94 . A comparison between M_{s} and M_{F}, predicted in equation (8) for the period 1899-1915, shown in figure 8 , implies that the data set for the period 1899 1915 also satisfies equation (8). This also implies that for shallow events with $r_{i} \geqslant 15 \mathrm{~km}$, the effect of focal depth on M_{F} is negligible. M_{F} is the equivalent surface-wave magnitude in terms of felt effects.

Figure 8
Comparison between stardard surface-wave magnitudes M_{s} and magnitudes M_{F} calculated from macroseismic data for northeast Mediterranean earthquakes in the range $4.5 \leqslant M_{s} \leqslant 7.5$.

Equation (8) was used to assign magnitudes to events for which no instrumental data is available but for which there are values of r_{i} and I_{i}. Thus, equivalent magnitudes M_{F} were assigned to 229 events, mainly of small magnitude (table 2), bringing to 380 the total number of events for which magnitude may be determined.

CONCLUSIONS

Table 2 lists all earthquakes retrieved for the period 1899-1915, a total of 760 events including the larger foreshocks and aftershocks, that is, the smaller shocks from the same epicentral region that precede or follow the main shock by a few days or months respectively. Information on these events has been extracted from a wide variety of sources and compares with the 134 events for the period given by Öcal (1968), and 90 and 86 events respectively by Ergin et al. (1967) and Pinar and Lahn (1952). Other available catalogues list far fewer still (Mihailovic, 1927 ; Plassard, 1960 ; Öcal, 1961 ; Plassard and Kogoj, 1968 ; Kárnik, 1968, 1971; Kondorskaya and Shebalin, 1977 ; Soysal et al., 1981).
Figure 9 shows a plot of the localities from which shocks were reported as felt at a single place (points c) and of the epicentres of small events with $M \leqslant 4.9$ (points a and b) - but excluding fore - and aftershocks: here we can see that contemporary press reports and other sources of information provide a fairly unbiased sample in terms of population density and distance from the larger centres of communication. Thus, the number of small events reported from the remote areas of eastern and southeastern Anatolia, from Hakkari and Elazig provinces for instance, is not significantly less than those reported from around Istanbul, Bursa and Izmir: the only difference is that reports of events in the remoter areas appeared in the press after considerable delay.

One notable conclusion to be drawn from figure 9 is that a thorough search in the contemporary press and the proper interpretation of the data therein may provide information as detailed as the world network of seismograph stations of the late 1950 s , if not better. Another conclusion is that if such a condition is satisfied for the small events depicted in figure 9. i.e. $M \leqslant 4.9$, no larger magnitude events are likely to have been missed out. A possible exception may be small events which occurred in Thrace and in the area to the northeast of Erzurum during the military operations there in 1912-13 and 1914-15 respectively.
Figure 10 shows the distribution of epicentral regions of all earthquakes of the period 1899-1915, excluding foreshocks and aftershocks. This 17 -year period is dominated by the three large shocks of $M_{s} \geqslant 7.0$ of Patnos, 1903, in the east, Saros-Marmara, 1912 in the northwest and Burdur, 1914 in the southwest ; it is also characterised by the relatively high level of activity of the East Anatoiian fault zone i.e. the Taurus zone that extends along the line of Maraş-Elazig-Bingöl, and which has been relatively quiet during the last few decades. A relatively high level of activity is also apparent on the North Anatolian fault zone between Amasya and Suşehri and near Tosya, but with most of the segments of this zone, which broke between 1939 and 1967, showing no signs of activity during the period 1899-1915. Relatively high, diffused seismicity is also noticed in the Erzurum-Kars-Caucasus area and in western Anatolia in the region of Izmir-Balikesir-Eskişehir-Aydin-Muğla.

Figure 9

- Distribution of small earthquakes in Turkey and neighbouring regions (34°. $\mathrm{N}-42^{\circ} \mathrm{N}$ and $26^{\circ} \mathrm{E}-44^{\circ} \mathrm{E}$) during the period $1899-1915$ deduced from a combination of macroseismic and early instrumental data: a) indicates macroseismic epicentres of low magnitude, local events with $5.0<M_{s} \leqslant 4.0 ;$ b) macroseismic epicentres of small magnilude events with $M_{s}<4.0 ;$ c) localities which were the sole source of reports of small intensity shocks, excluding foreshocks and aftershocks of the larger events. This map suggests that our sources of information provide a reasonably unbiased distribution of activity in terms of population density and proximity to communication centres.

Figure 10
Distribution of macroseismic epicentres, excluding foreshocks and aftershocks, for the period 1899-1915: a) $7.5>M_{s} \geqslant 7.0$; b) $7.0>M_{s} \geqslant 6.0$; c) $6.0>M_{s} \geqslant 5.0$; d) $5.0>M_{s} \geqslant 4.0$; e) $M_{s}<4.0$; f) very small local shocks felt only at one place.

Figure 11
Cumulative frequency distribution of earthquakes in Turkey and neighbouring regions ($34^{\circ} \mathrm{N}-42^{\circ} \mathrm{N}$ and $26^{\circ} \mathrm{E}-44^{\circ} \mathrm{E}$) shown in figure 1. Solid circles: for the period 1899-1915; solid triangles : for the period 1899-1983. N is the annual number of earthquakes in the region of magnitude equal to or greater than M_{s}.

Figure 11 shows the cumulative frequency distribution of earthquakes - excluding foreshocks and aftershocks - with $M_{s} \geqslant 4.0$ in the whole region for the period 1899-1915 (solid circles). On the same plot we have superimposed the data for the same region but for the longer period 1899-1983 for which we have uniformly-assessed M_{s} values in excess of 5.7 (solid triangles). It is interesting to note that the two distributions coalesce in the range of common magnitudes, confirming that, in this range, the very short period sample of 1899-1915 is representative of the regional activity that can be deduced from a period of observation five times as long. The shape of the combined frequency distribution is of course not linear for the whole range of magnitudes. For the range 4.5 to 6.5 , a magnitude range that represents a «background» activity independent of the large-scale tectonic elements, the b-value, is found from figure 11 to be about $b=0.7$. At the upper end of the recurrence curve, where the frequency distribution reflects activity of large tectonic structures, it steepens to values of $b=1.5$. However, because of the very long waiting times or return periods required to sample large events, much longer than the period of 85 years between 1899 and 1983, and also because of the boundary conditions of the region over which we are sampling the activity, the precise way in which the recurrence curve steepens is not yet clear.
A 17-year period of observations is hardly sufficient to allow conclusions to be drawn about the long-term
seismicity of the region. However, these observations show that many other parts of the region, removed from the North Anatolian fault zone, are capable of producing earthquakes of magnitude in excess of 7.0, that the present-day quiescence of the Taurus region is only temporary, and that it is possible, by combining early instrumental data and macroseismic information to investigate in considerable detail the seismic activity of a region during the first part of this century.
It is the association of felt reports with instrumental data which provides the best guide for the identification of the larger events in a region. Even in the absence of detailed macroseismic data, amplitude and period information, or even only the number of reporting seismograph stations, may be used to assess the relative magnitude of an event. Indeed, some of the larger events, particularly those in sparsely-inhabited areas, or those with offshore epicentres, could not have been identified solely from their felt effects. Conversely, the magnitude of a number of events in western Anatolia has been overestimated: without instrumental data it would have been impossible to recognise as small, events in densely-populated areas which have been assigned abnormally high magnitudes on account of their large epicentral intensities.
Even when the instrumental data for earthquakes of the period are, taken alone, insufficient to allow a relocation of the event, they are found to be of value when analysed in conjunction with macroseismic data. The number of stations recording an event for which we have sufficient macroseismic data, the amplitudes and periods recorded, the maximum distance at which the event was detected by instruments - all these provide valuable information from which we can assess the size or magnitude of an event.
All of the relatively large earthquakes identified for this period in the press were found to have been recorded by the seismographic network of the time: conversely, only very few events in the area that are known to have been recorded instrumentally, and whose location was thus roughly known, escaped coverage in the press. Indeed, an absence of press reports concerning an earthquake located by instruments, and particularly those thought to have taken place on land, was generally found to mean that the instrumental location was seriously in error : such seemingly negative evidence proved to be of great value in the relocation of certain events.

In conclusion, the method used here to assess the seismicity of the northeast Mediterranean region during the period 1899-1915 may also be used to extend our knowledge of seismicity during earlier periods of time for which no instrumental but only macroseismic information is available (*).

Acknowledgements

This work forms part of a research project for the study of the historical seismicity and tectonics of the eastern Mediterranean supported by the Natural Environment Research Council.
We would like to thank the Turkish authorities for granting the necessary permissions to enable research to be undertaken in Turkey; the staffs of the National Library in Ankara, and of the Atatürk, Bayazid and Millet Libraries in Istanbul facilitated the task of retrieval of information. In London, the staff of the British Library Newspaper Division at Colindale and of the map room of the Royal Geographical Society were similarly helpful.
Thanks are also due to Mr. P. Pantelopoulos, Mrs B. Papazachos, Dr. M. Pavlovic, Dr. B. Sikosek, and all those who helped with the retrieval and translation of Greek, Yugoslav and Bulgarian reports and newspapers. Our colleagues V. Kárník, R. Adams and J. Jackson offered comments and advice.
(*) The following summary of the work involved in preparing this study may prove useful to those who would like to apply this methodology to the study of historical earthquakes in other parts of the world:

- 20 man-months of retrieval of data by a full-time researcher familiar with local history, geography and language (in the present case both modern and Ottoman Turkish, as well as French and German) ;
- 12 man-months of processing of both macroseismic and instrumental data by an experienced engineering seismologist with sufficient background knowledge of the seismicity and tectonics of the region;
- 4 man-months of retrieval of data from Greek, Yugoslav, Bulgarian and Russian sources, mainly newspapers and technical reports;
- access to national and local libraries in London, Istanbul, Ankara, Athens ;
- availability of an almost complete set of station bulletins of all seismograph stations in operation during the period;
- a small amount of computing facilities and advice from experienced colleagues.

Table 1
Conspectus of worldwide seismograph stations 1899-1915.

T_{0}	$0-5^{\prime \prime}$	$6-10^{\prime \prime}$	$11-15^{\prime \prime}$	$16-20^{\prime \prime}$	$20^{\prime \prime}$
V					
$0-20$	1 A	1 B	1 C	1D	1 E
$21-50$	2 A	2B	2C	2D	2 E
$51-100$	3 A	3 B	3C	3D	3 E
$101-200$	4 A	4 B	4 C	4 D	4 E
>200	5 A	5 B	5 C	5D	5 E

Key
= natural period of seismograph in seconds
$=$ gain of instrument
$=$ undamped
$=$ damped
$\mathrm{SC}^{1}=$ seismograph station code (US Geological Survey Circular 791, 1978)
$=$ geocentric distance of station from northeast Mediterranean, taken from $39^{\circ} \mathrm{N}-35^{\circ} \mathrm{E}$
$=$ ground amplitude reported in microns
$=$ period in seconds
$=$ trace amplitude reported in millimetres
= period in seconds
$=$ not available
$=$ incomplete.

For the different types of seismograph in use at the time, see Berlage (1932)
Note : the authors would be grateful to receive spare copies of station bulletins for the period before 1952 .
$18991900199119021903190419051906190719081909191019111912191319141915 \quad D^{\circ}$

18991900190119021903190419051906190719081909191019111912197319141915 D $^{\circ}$

Table 2
List of earthquakes in the northeast Mediterranean region, 1899-1915.
Key:
Date marked with an asterisk indicates foreshock or aftershock.
Origin time (O.T.) is given in GMT (hours and minutes).
Geographical coordinates of macroseismic epicentre are defined as the centre of the region that expenienced maximum intensity. Asterisked entries are values calculated from instrumental data. Suffix i implies epicentre probably associated with intermediate depth focus
I_{0} is the epicentral intensity in the MSK scale. An asterisk shows maximum intensity value observed, not necessarily epicentral. F indicates that the shock was felt in one or more places with generally low intensity which cannot be determined.
F shows that the shock was associated with faulting, and s with an offshore epicentre. L indicates spurious origin, probably associated with landslides.
r_{i} are the average radii of isoseismal intensity I_{i} derived from isoseismal lines in km . r_{i}^{*} values show average distance to sites of similar intensity. Dashed values show incongruous radii.
N is the number of stations that recorded the event. The sign of + indicates the minimum or an indeterminate number. An asterisk shows that station readings were masked by a distant large earthquake occurring at the same time.
$M_{s}=M, d M$ and n are the average surface-wave magnitude and its standard deviation computed with station corrections from readings of n instruments. When M is not followed by $d M$ and n but the value of M^{*} for the event is available, M is the value of surface-wave magnitude from equation (6). If $d M, n$ and M^{*} are not shown for a particular entry, the M value given is from macroseismic data and equation (8).
$m, d m$ and n are the average body-wave magnitude and its standard deviation without station corrections derived from n instruments
$M^{*}, d M$ and n are the average surface-wave magnitude derived from undamped Milne seismographs, its standard deviation and the number of stations that supplied amplitude data (eq. (4))
$Q, S 1, S 2$ and $S 3$ indicate that the main shock was preceded and/or followed by smaller shocks for days, weeks and months respectively. An asterisk shows entries for which more information is needed. L indicates a local shock of limited extent. f marks events whose epicentral region was visited by the authors

\qquad $\begin{array}{ll}\text { 80 } & = \\ - & -\end{array}$
 Jul ${ }^{-} 6^{\circ}$
11
11
12
12
12
13
16
16
18
19°

\qquad

 よW以

200
$=-150^{\circ}$
$=$
$=50^{*}$
$=$
$\begin{array}{r}5 \\ \hline 90 \\ \hline\end{array}$

40
$5.9(-11$
3.4
$\begin{array}{ll}5.8(0.1) 2 & S^{1} \\ - & L\end{array}$

$-{ }_{\text {Jan }}^{1907}$

$\begin{array}{ll}\overline{-} & - \\ 20^{*} & - \\ - & - \\ - & \overline{2} \\ - & 20^{\circ}\end{array}$

 \qquad
\qquad

N	Mddm n	dm	M*	Q
-				
$1+$	4.6	-	-	S1
-	$\overline{5} .1$	-	-	52°
1	4.0	:	-	
1	-	-	-	L
-	3.8	-	-	
	4.2 , 11	-		
1	4.81-)1	-	-	${ }_{\text {L }}$.
-	4.3	-	-	
	4.5	-		
13	4.8(0.2)3	-	-	
-	-	-		${ }^{*}$
$3+$	4.2	-	4.4(-) 11	*
-	-	-	-	$\stackrel{151}{151}$
20	5.1(0.1)6	5.5(0.2)2	5.010.1)2	s2
15	5.00.2) 5	5.7(-)1	4.6(-) 11	
15	5.0(0.2)6	5.9(-)1	4.7(-)1	
14	4.6(-) 1	-	4.66 -) 1	
11	4.8(0.1)3	-	4.6(-)1	51
-	-	-	-	2.
14	4.5(0.1)5	-	4.6(-) 1	$\stackrel{1}{2}$
1	4.1(- 11	-	-	-
43	6.1(0.1)8	5.9(0.2)4	6.2(0.1)13	32°
31	5.3(0.3)6	$\overline{5.6(0.2) 4}$	$5.3(0.1) 3$	52
				${ }_{L}$

品

	©nx
dimnco	\%
 	B, \%
	\%

	Э. ${ }_{\text {¢ }}^{\text {m }}$
, , 1, 1, 1, , , , , , , , , , , , 1,	...1
('1'1'1'1'1'1'1''	1.1.
''،'1'1''	' ' ' '
, , , , , ', '1, ', 1, 1,	1
	, in , i
	'1'1'

$37.23-37.82$
$39.90-41.30$
$40.87-42.07$
$42.30-43.00$
$41.50-44.50$
F
IV
F
VII
V

$4.65-19$
$3.26-19$

$\begin{array}{ll}\overline{-} & 10 \\ \overline{-} & 18 \\ - & \overline{1} \\ 95 & =\end{array}$
$\overline{-}{ }^{150}{ }^{19}$
$\overline{-}$

$-50^{\circ}=$
160^{\prime}
120^{\prime}
60

$5.7(0.2) 5$	L
-	S 1
$6.4(0.1) 16$	L
$6.0(0.1) 10$	S
$5.9(0.1) 10$	
$5.5(0.1) 3$	
$5.5(0.2) 11$	s 1
-	
$5.2(0.3) 3$	
$5.8(0.1) 8$	
$5.1(0.4) 2$	

$\begin{array}{ll}4.4(-) 1 & L \\ - & L\end{array}$
3.7-) 1

			I_{0}	r2	5384	45	r6	r7	r8	r9	N	M dM n	$m \mathrm{dm}$ n	M* dM	Q				I。	r2	r3	${ }^{4}$	r 5	r6	r7	r8	r9	N M dm	m dm n	M
${ }^{1912}{ }^{191}$ 21.	0930	40.70-27.08	F	-	- -	-	-	-		-		4.4(-)1	-	4.9(-)1		${ }_{\text {Mar }}^{1914} 9$	1000	41.05-29.00	F	-	-		-	-	-	-	-	,		
21.	2339	40.70-27.08	vir	-	100°	-	12^{*}	-	-	-	8	$5.1(0.4) 3$	-	4.9 -		${ }_{\text {Apr }}{ }_{5}^{25}$	1430	$38.71-39.96$ $40.00-41.70$	F_{v}	-	30.	-	-	:	-	-	-		-	
Dec 24*	2005	40.59-2\%.56	Iv^{*}	-	- -	-	,	-	-	-		s.to.n)	-	-		$\begin{aligned} & \text { Apr } 5 \\ & \text { May } \\ & \hline 10 \end{aligned}$	1430 1346	$\begin{aligned} & 40.00-41.70 \\ & 39.15-26.65 \end{aligned}$	v^{v}	-	30*	-	-	-	-	-	-		-	
${ }^{1913}$		36.73-29.93	F													${ }_{28} 8$	1044 1127	$39.50-36.50$ $39.25-36.00$	${ }_{\text {vi }}{ }^{\text {vi }}$ -	-	190	100	-		is	-		17+ $5.06(0.2) 9$	6.1	
Jan 25	0815	41.00-28.97	${ }_{\text {F }}$	-	- -	-	-	-	$\bar{\square}$	-	-	-	-	-	$\stackrel{s}{4}^{\text {c }}$	Jun 6°	0250	39.25-36.00	F	-			-	-				39+ $5.6(0.2) 12$	6.1-)1	
27	1939	39.06-41.60	viti	-	$100 \cdot$	-	-	15*	-	-	47	5.6(0.2)9	5.6(-)1	5.5(0.3)9	${ }_{31}$	Jul 3°	0019	39.20-36.00	$\stackrel{F}{\text { F }}$	-	-	-	-	-	-	-	-	$7+\cdot 4.7(0.1) 5$	-	
Feb ${ }^{27}$	2070	39.56-33.12	$\stackrel{\mathrm{F}}{\mathrm{F}}$	-	- -	-	-	-		-			-	-	L	Aug ${ }^{3}$	13839	$37.92-28.92$ $39.65-43.90$	${ }_{\mathrm{viI}}$	-	-	-	-	30^{*}	12.	-	-	$6+5$		
2	0630	38.79-27.87	v	-	60°	-	-	-	-	-	-	4.6	-	-	.	21	0851	38.00-31.50	F	-	-	-	-		-	-	-	$3+4.7(0.1) 3$	-	
4	2200	39.75-39.49	${ }^{\text {IV }}$	-	- -	-	-	-	-	-	-		-	-	${ }^{\text {L }}$	${ }^{24}$		38.37-26.14	$\stackrel{\mathrm{F}}{\mathrm{F}}$ -	-	-	-	-	-	-	-	-		-	
Mar ${ }^{26}$	2130 0030	$40.30-37.85$ $39.32-40.36$	${ }_{\text {F }}^{\text {F }}$	-	- :	-	-	-	-	-	-	-	-	-	${ }_{2}$.	Sep 29	2206	$39.75-39.49$ $37.82-30.27$	IX	-	-	300	-	100	60	40	-	69 7.010.3)19		
28	0900	40.97-27.53	F	-	- -	-	-	-	-	-	-	-	-	-	LS^{1}	$3 \cdot$	2323	37.80-30.25	-	-	-	-		-		-	-	$1+\cdot 4.8(-11$		
${ }^{29}{ }^{\circ}$	000	40.97-27.53	F	-	- -	-	-	-	-	-	-	-	-	-		$4^{4}{ }^{\circ}$	0022	37.80-30.25	-	-	-	-	-	-	-	-	-	$3+\cdot 4.7(0.1) 2$	-	
Apr ${ }^{30}$	2330	$40.97-27.53$ $41.50-44.60$	$\stackrel{\mathrm{F}}{\mathrm{V} \text { - }}$.	-	2008130	72	25	-	-	-	40	5.6(0.3)7	5.7(0.2)2	$5.5(0.2) 7$		$4{ }^{\circ}$	1550	$37.80-30.25$ $37.80-30.25$	-	-	-	-	-	-	-	-		$1+* * .6(-1) 1$ $8+5.0(0.1) 6$	-	
	1700	40.80-27.55	v^{+}	-	75		,	-	-	-		4.8	5.70.2) 2	$5.5(0.2) 7$	S1	$4 \cdot$	1620	37.80-30.25	-	-	-	-	-	-	-	-		2+ $2.6 .6(0.2) 2$	-	
May 8	2345	40.05-30.13	VI_{1} -	-	$90^{\circ} 35^{\circ}$	-	-	-	-	-	-	4.8	-	-	s1	$4{ }^{4}$	1750	37.80-30.25	-	-	-	-	-	-	-	-		1+ $4.4(-) 11$	-	
14	1830 0915	$40.42-29.15$ $41.67-26.56$	$\mathrm{vi}_{\text {v }}$	-	3	-	:	-	-	-	-	-	-	-	${ }_{1}^{1}$	4°	1810 1848	$37.80-30.25$ $37.75-30.45$	vit	-	-	-	-	-	-	-		4+ $4.8(0.1)^{4}$	-	
Aug 16	2120	41.63-28.12	F	-	- -	-	-	-	-	-	-	-	-	-	${ }_{\text {L }}$	$4{ }^{\circ}$	2028	37.80-30.25	-	-	-	-	-	-	-	-	-	$1+4.5(-11$	-	
Nov 4		36.60-36.40	F	-	- -	-	-	-	-	-	-	-	-	-	${ }^{\text {L }}$	$5{ }^{5}$	1211	37.75-30.45	${ }^{\text {F }}$	-	-	-	-	-	-	-	-	$4+4.7(0.2) 3$	-	
$\mathrm{Dec}{ }_{9}^{20}$	2210 0230	$41.02-28.97$ $39.40-41.08$	${ }_{\mathrm{v}}^{\mathrm{F}} \mathrm{F}$	-	60	-	-	-	-	-	-	5.2	-	-	${ }_{\text {L }}^{\text {L }}$.	$6_{80}{ }^{\circ}$	12123	$37.75-30.45$ $37.80-30.25$	${ }_{\mathrm{VI}}^{\mathrm{F}}$.	-	-	-	-		-	-	-	$\begin{array}{ll}6 \\ 8 & 4.8(0.3) 4 \\ 8 & 4.90 .148\end{array}$	-	
27	-	40.50-27.61	iv	-	6	-	-	-	-	-	-		-	-	st	10°	1312	37.60-30.06	VII	-	-	-	-	-	-	-	-	${ }_{8+}^{8.000 .2) 7}$	-	
- 1914																13°	2038	$37.60-30.06$ $38.80-30.30$	v^{*}	-	-	-	-	-	-	-	- 9	$\begin{array}{ll}9+ & 5.1(0.2) 7 \\ 1+4.50 \\ 6\end{array}$	-	
Jan 20	- 145	35.50-44.80	V°	-	55°	-	-	-	-	-	$+4$	4.5	-	-	-	$17{ }^{\circ}$	0013	37.80-30.30	$\stackrel{\text { F }}{ }$	-	-	-	-	-	-	-	-	6 4.8(0.1)3	-	
25	2145	40.48-41.01	VI^{*}	-	-								-		1		${ }^{0} 4105$	41.02-28.97.	IV	-	-	-	-	-	-	-			-	
31	1045	38.71-39.96	${ }^{\mathrm{F}}$.	-	- -	-	-	-	-	-	-		-	-	S1	Nor 1	2153	38.40-45.40*	-	-	-	-	-	-	-	-	-	$4.2(-) 1$	-	-
Feb Mar 5	1780 175	37.77-25.98	${ }_{F}{ }^{\text {V }}$	-	- $=$	-			-							- 1915^{1}														
Mar	1910	38.46-42.15	VIII	-	- -	-	-	$\overline{15}$	-			$5.2(0.2) 9$ $5.8(0.1) 2$	${ }_{6.1(0.2) 2}^{6.1}$	-	s1*	Jan ?	0719	39.30-26.65	${ }^{*}$	-	45°	-	-	-	-	-		1+4.3(-)1	-	
$7 \times$	2200	38.46-42.15	viI	-	- -	-	-	-	-	-	+*		(-		Feb ${ }^{18}{ }^{\circ}$	O819	38.30-26.65 38.50-41.50	F	50°	-	-	-		-	-		$-\quad 3.8$ $9+5.5(0.3) 8$	-	
																Feb 28°	1248	38.50-41.50	-	-	-	-	-	-	-	-		4+ $5.2(0.2) 4$		
																Mar ${ }^{\text {Mar }} 1$	1730 0542	38.42-27.15	${ }_{\text {F }}^{\mathrm{V}}$.	-	-	-	45	-	-	-	-	-	-	
																May 19	0448	38.45-40.25*		-		25	S	-	-	-		$\begin{array}{ll}4+ & 5.1(0.344 \\ 29 \\ 50.5(0.2) 7\end{array}$	5.6(-)1	
																Dec 25	0606	39.30-36.15	iv*	-	-	70^{*}	-	-	-	-	- 1	$16+5.5(0.2) 2$	-	-

Table 3
Station corrections C_{i} for surface-wave magnitudes

	This study		Karnik $\left(^{*}\right)$	Iran $\left(^{* *}\right)$
	$C_{i} d C \quad n$	n_{0}	C_{i}	C_{i}
Aachen	$-0.1(-) 1$	5	+0.1	-
Athens	$+0.1(0.3) 27$	51	+0.1	-0.1
Beograd	$-0.4(0.1) 2$	20	-0.3	0
Berkeley	$-0.1(-) 1$	3	0	-
Budapest	$+0.1(0.2) 15$	31	+0.1	-
Biberach	$-0.2(0.0) 4$	5	+0.4	-
Cartuja	$+0.2(0.2) 8$	18	+0.1	-
Czernowitz	$+0.1(0.1) 3$	7	0	-
De Bilt	$-0.2(0.2) 39$	67	-0.2	-0.1
Gottingen	$+0.2(0.2) 39$	71	+0.1	+0.1
Graz	$+0.2(0.1) 2$	9	+0.2	-
Irkutsk	$+0.2(0.4) 2$	12	-0.1	-0.3

	This study		Karnik $\left(^{*}\right)$	Iran $\left({ }^{* *}\right)$
	$C_{i} d C n$	n_{0}	C_{i}	C_{i}
Harput	$-0.3(0.5) 12$	18		-
Hohenheim	$0(0.3) 11$	34	+0.4	+0.1
Hamburg	$-0.2(0.1) 16$	41	-0.2	-0.3
Jena	$-0.1(-) 1$	5	+0.1	+0.1
Krakow	$-0.1(0.1) 5$	12	0	+0.1
Königsberg	$+0.1(-) 1$	4	0	-
Leipig	$+0.4(0.2) 19$	24	0	+0.1
Ljubljana	$-0.1(0.2) 6$	29	+0.1	0
Lvov	$-0.1(0.1) 8$	12	-0.2	-
Munchen	$+0.4(0.3) 2$	2	0	-
Osaka	$-0.5(0.6) 2$	8	-0.2	-
Potsdam	$-0.2(0.2) 41$	95	-0.2	-0.1

[^0]Table 4
Station corrections C_{j} for Milne penduli.

Station	This study	
	$C_{j} d C_{j} n$	Abe (1985)
	$-0.25(-) 1$	$+0.07(0.24) 18$
Adelaide	$+0.34(-) 1$	$+0.02(0.20) 6$
Ascension	$+0.07(-) 1$	$+0.27(0.29) 15$
Acores		$+0.01(0.35) 11$
Baltimore	$+0.09(0.07) 2$	$+0.14(0.33) 16$
Batavia	$+0.04(0.37) 22$	$+0.12(0.20) 23$
Beyrouth	$-0.03(0.32) 31$	$-0.11(0.27) 41$
Bidstone	$+0.09(0.39) 9$	$+0.07(0.29) 36$
Bombay	$-0.18(0.34) 6$	$-0.07(0.28) 30$
Calcutta	$-0.23(0.27) 18$	$+0.01(0.34) 32$
Cape		
Chacarita (B. Air)		
Christchurch	$-0.02(0.24) 4$	$+0.16(0.24) 21$
Cocos	$+0.20(-) 1$	$+0.21(0.26) 8$
Colombo	$-0.01(0.03) 2$	
Cordova	$+0.12(0.21) 28$	$+0.04(0.21) 42$
Cork	$-0.04(0.20) 9$	$-0.04(0.27) 23$
Edinbourgh	$+0.10(-) 1$	$+0.02(0.26) 10$
Eskdalemuir	$-0.14(0.40) 6$	$+0.07(0.30) 18$
Fern. Noronha	$+0.23(0.26) 35$	$+0.04(0.22) 30$
Guilford	$-0.09(0.28) 12$	$-0.25(0.23) 33$
Helwan	$+0.31(0.81) 2$	$-0.02(0.34) 35$
Haslemere		
Honolulu		

Station	This study $C_{j} d C_{j} \quad n$	$\begin{aligned} & \text { Abe }(1985) \\ & C \quad d C \quad n \end{aligned}$
Irkutsk	$+0.04(0.50) 8$	$+0.04(0.28) 12$
Kew	$+0.13(0.28) 14$	$-0.11(0.20) 41$
Kodaikanal	+0.06(0.38) 5	+0.18(0.28)36
Lima		+ 0.19(0.27) 7
Malta	$-0.03(0.37) 15$	-0.10(0.16)22
Mauritius	+0.45(0.42) 3	+0.03(0.28)22
Paisley	-0.01(0.27)19	+ 0.04(0.23)39
Perth	+0.34(-) 1	+0.11(0.23)21
Rio Tinto (Hue)	$+0.26(0.14) 3$	- 0.15(0.33)13
S. Fernando	-0.05(0.23)10	-0.34(0.34)38
Seychelles		-0.02(0.22) 5
Shide	$-0.16(0.32) 37$	- 0.30(0.26)36
Stonyhurst	$-0.05(0.20) 11$	- 0.28(0.24)26
St. Helena		
St. Vincent (C. Vr)		-0.13(0.33) 6
Sydney	$-0.66(-) 1$	+0.24(0.24)25
Tiflis	$+0.14(0.32) 25$	
Tokyo		+ 0.06(0.30)13
Toronto	$+0.50(0.49) 3$	+ 0.20(0.34)37
Trinidad		+0.25(0.22)15
Victoria	$+0.51(0.40) 4$	$+0.31(0.27) 32$
Wellington		+0.11(0.16) 8
W. Bromwich	$-0.21(0.38) 7$	-0.43(0.27)15

REFERENCES

Abe K., 1985. Magnitude determination from Milne undamped seismograms. In : Proc. Symp. Hist. Seismogr. and Earthquakes, Ed. W. Lee, paper 3, Tokyo.
Allen C., 1975. Geological criteria for evaluating seismicity. Bull. Geol. Soc. Amer., 86, 1041-1057.
Ambraseys N., 1978. The relocation of epicentres in Iran. Geophys. J. Roy. Astron. Soc., 53, 117-21.

Ambraseys N., Melville C., 1982. A history of Persian earthquakes. Cambridge Univ. Press.
Ambraseys N., Adams R., 1986. Seismicity of West Africa. Ann. Geophysicae, 4B (6). 679-702, Paris.
Ambraseys N., Finkel C., 1986. Isoseismal maps for earthquakes in the northeast Mediterranean region, 1899-1983. Imperial College, Keport Eng. Seismol. Earthq. Eng., ESEE 86.8, London.
Ambraseys N., Finkel C., 1987. The Saros-Marmara earthquake of 9 August 1912. J. Earthq. Eng. Struct. Dyn., 15 (2), 189-211.
Anonymous, 1899. Tremblement de terre de Smyrne. La Nature, 350, Paris.
Anonymous, 1900. Das Erdbeben im Vilajet Smyrna am 21 September 1899. Jahrb. Astron. Geophys., 11, 185-186, Leipzig and Gaea (1900), 57.
BAAS, British Association for the Advancement of Science. Seismological Investigation Reports (1899-1917), London.
Ballore M. de, 1906. Les tremblements de terre; la géographie séismologique. Armand Colin, Paris.
Ballore M. de, 1924. La géologie sismologique. Armand Colin, Paris.
Berlage H., 1932. Seismometer. In: Handbuch der Geophysik, Ed. B. Gutenberg, 4, 299-526, Berlin.

Byus E., 1941. Chernomorskoe zemletriasenie 21 oktobria 1905 g. i nekotorye zamechaniia o makroseismicheskom opredelenii glubiny fokusa. Kvart. Tbilisi Byull. Seism., 11 (4).
Byus E., 1948. Seismicheskie usloviya zakavkaz'ya. Izdat. Akad. Nauk Gruzinsk. SSR, Tbilisi.
Cancani A., 1900. Terremoto di Aidin. Notizie sui Terremoti Osservati in Italia, 1899, 212-23. Rome.
Cancani A., 1902. Terremoto del 31 Marzo nel Mar Nero, Notizie sui Terremoti Osservati in Italia, 1901, 75-87, Rome.
Christiansen A., Ziemendorff, vid., 1909. Les tremblements de
terre ressentis pendant lannée 1905. Publ. Bureau Cent. Assoc. Internat. Séismologie, Strasbourg.
Debitski V. I., 1900. Zemletriasenie v Karsskoi oblasti 29 iyuna 1900 g. Izv. Kavkaz. Otd. Imp. Russ. Geogr. Obsch., 13, 109-10. 155-62, Tbilisi.
Eginitis D., 1909. Etude des séismes survenue en Grèce pendant les années 1904-1908. Ann. Obs. Natl. Athènes, sub-annum, 66-71, 560-92.
Eginitis D., 1912. Catalogue des tremblements de terre observés en Grèce, 1909-1911. Ann. Obs. Natl. Athènes, 6, 304-33.
Ergin K., Güçlü U., Uz Z., 1967. Türkiye ve civarinin deprem katalogu: Milattan sonra 11 yilindan 1964 sonuna kadar. Istanbul Teknik Universitesi Maden Fakültesi Arz Fiziği Enstitüsü Yayinlari 24.

Fitzner R., 1903. Erdbebenbeobachtungen in Kleinasien. Petermanns Mitt., 49, 130-34, Gotha.
Florinesco A., 1958. Catalogue des tremblements de terre ressentis sur le territoire de la République Populaire de Roumanie. Acad. Republ. Popul. Romania, Bucharest.
Galanopoulos A., 1955. Seismiki geographia tis Hellados. Ann. Géol. Pays Helléniques, 6, 83-121, Athens.
Gelescova A., 1902. Le tremblement de terre du district de Baltchik-Varna, 31 mars 1901. Bull. Soc. Astron. France, 6, 42-44. Paris.
Grigorova E., Grigorov B., 1964. Epichentrite i seismichnite linii v N.R. Bulgaria. Publ. Geofiz. Inst. Bulg. Akad. Sci., Sofia.

Gutenberg B., Richter C., 1965. Seismicity of the earth and associated phenomena. Hafner, New York; and Gutenberg's unpublished worksheets held in the Millikan Memorial Library, California Institute of Technology.
ISS International Seismological Summary (1918-1962). Oxford; Kew.
Kárnik V., 1968. Seismicity of the European area. 1. Academia Publ. House, Prague.
Kárnik V., 1971. Seismicity of the European area. II. Reidel, Dordrecht.
King D., 1980. Astronomical time-keeping in Ottoman Turkey. In : Proc. Intern. Symp. on the Observatories in Islam, Ed. M. Dizer, 245-69. Istanbul.

Kondorskaya N., Shebalin N., 1977. Novii katalog silniikh zemletriasenii na territorii SSSR. Izdat. Akad. Nauk SSSR. Moscow.
Levitski G., 1901-1908. Biulleten Postoiannoi Tsentralnoi Seismicheskoi Komissii 1902-07, 1-3. Imperat. Akad. Nauka, St. Petersburg,
Lysakowski C., 1902. Tremblement de terre de Tchangri, Asie Mineure. Bull, Soc. Astron. France, 6, 237, Paris.

Lysakowski C., 1910. Tremblements de terre de la Perse du 23 janvier (Burujird) ; de la Bulgarie 15 février 1909. Bull. Soc. Astron. France, 24, 45-50. Paris.
Mihailovic J., 1911. Katalog der in den Jahren 1901-1906 in Serbien vorgekommenen Erdbeben. Ann. Géol. Penins. Balkanique, 6, 1547. Belgrade.

Mihailovic J., 1927. Trusne katastrofe na Mramornome moru Posebna Izd. Srpska Akad. Nauka, 65 (16), Belgrade.
Milne J., 1909. The large earthquakes of 1908. British Assoc. Adv. Sci., 14th Seismological Investigation Report, Winnipeg.
Milne J., 1911a. Catalogue of destructive earthquakes. British Assoc. Adv. Sci., Portsmouth.
Milne J., 1911b. Seismic activity, 1899-1903. British Assoc. Adv. Sci., 16th Seismological Investigation Report, Portsmouth
Milne J., 1912. Seismic activity, 1904-1909. British Assoc. Adv. Sci., 17th Seismological Investigation Report, Dundee.
Milne J., 1913. Seismic activity in 1910. British Assoc. Adv. Sci. 18th Seismological Investigation Report, Birmingham.
Öcal N., 1961. 1850 yilina kadar I-VII intensiteli Türkiye zelzeleleri Katalogu. Kandilli Rasathanesi Sismoloji Yayinlari 7, Istanbul.
Öcal N., 1968, Türkiye sismisitesi ve zelzele cografyasi, 1850-1960 yillari için Türkiye zelzele kataloḡu. Kandilli Rasathanesi Sismoloji Yayinlari 8, Istanbul.
Oddone E., 1907. Tremblements de terre ressentis pendant l`année 1904. Publ. Bureau Cent. Assoc. Internat. Séismologie (ser. B), 1 . 361, Strasbourg.
Pinar N., Lahn E., 1952. Türkiye depremieri izahli kataloḡu, Bayindirlik Bakanliḡi. Yapi ve Imar Işleri Reisliği, 36 (6), Ankara.
Plassard J., 1960. Catalogue des séismes 1903-1956 du ProcheOrient. Observatoire de Ksara, unpublished report.
Plassard J., Kogoj B., 1968. Catalogue des séismes ressentis au Liban. Annales-Mémoires Observatoire de Ksara, 4 (1), Ksara-parZahleh.
Popescu-Cernauti I. G., 1938. Cutremurele de pamant din Dobroga. Analele Dobrogei, 19, 3-27. Bucharest.
Popescu-Cernauti I. G., 1939. Sur les épicentres des tremblements de terre ressentis en Dobroudja. C. R. Séances Inst. Sci. Roumanie, 3 (2), 166-71, Bucharest.
Press Reports various issues of the following papers:
Istanbul : Levant Herald; Stamboul; Neologos: Ikdam; Sabah
Izmir : Amaltheia
Konya : Hakem
Official Ottoman provincial newspapers (vilayet gazeteleri) : Diyarbakir; Konya; Beirut; Mamuret ül-Aziz (Elaziğ); Kastamonu
Athens : Hestia
Thessaloniki : Makedonia
Sofia : Drevnik; Utro
Tbilisi : Kavkas
Tehran : Payman; Khulasat ul Havadith
London : Nature.
PRO, 1901. Various communications on the November 8, Erzurum earthquake from Lamb, consul in Erzurum, to O^{\prime} Conor, British Ambassador in Constantinople. Public Record Office: FO 424/202/82, 87, 88 ; FO 195/2125/96, 159, 225. 316. London.
PRO, 1903. Various reports and communications on the April 28. Patnos earthquake from British vice-consuls and others in E. Anatolia to O'Conor, Ambassador in Constantinople and to various agencies in London. Public Record Office: FO 78/5266: $22,100,102,104,105,107,108,393,395$; FO 78/5267:93, 98 ; FO 78/5268: 250; FO 195/2147: 111, 131. (Copies at FO 195/2147: $121,123,125,152,193)$, London.
Réthly A., 1952. A Kárpátmedencék földrengései. Akad. Kiadó, Budapest.
Riggs H. H., 1909a. Monthly earthquake reports. Euphrates College Seismol. Station (1905-1909), Harput.
Riggs H. H., 1909b. Report on the earthquakes of February 9 and 10, 1909. Report of Euphrates College, Harput.

Rudolph E., 1905. Katalog der im Jahre 1903 bekannt gewordenen Erdbeben. Beitr. Z. Geophys., 3, 674, Leipzig.
Schaffer F., 1900. Das Meanderthalbeben vom 20 September 1899 Mitt. K. K. Geogr. Ges., 43, 221-31, Vienna.
Scheu E., 1910a. Catalogue régional des tremblements de terre ressentis pendant l'année 1906. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B) : catalogues, Strasbourg.
Scheu E., 1910b. Catalogue général des tremblements de terre ressentis par l'homme et enregistrés par les instruments pendant l’année 1906. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B) : catalogues, Strasbourg.
Scheu E., 1911. Les tremblements de terre ressentis pendant l'année 1906. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Scheu E., Lais R., 1912. Catalogue régional des tremblements de terre ressentis pendant l'année 1907. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B) : catalogues, Strasbourg.
Shebalin N., Kárník V., Hadzievski D., 1974. Catalogue of earthquakes in the Balkan region. UNDR-UNESCO Publ., Skopje.
Shide Circulars nos. 1-27, British Assoc. Adv. Sci. (1899-1912). Shide, Isle of Wight.
Sieberg A., 1917. Catalogue régional des tremblements de terre ressentis pendant l’année 1908 et catalogue général des tremblements de terre. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.

Sieberg A., 1932a. Untersuchungen über Erdbeben und Bruchschollenbau im ostlichen Mittelmeergebiet. Denksch. Mediz. -Naturwiss. Ges. Jena, 8 (2), 198-224.
Sieberg A., 1932b. Erdbebengeographie. In: Handbuch der Geophysik, Ed. B. Gutenberg, 4, 775-812, Berlin.
Sipahioglu S., 1979. Büyük Menderes alçalimi ile Menderes Masifi yükseliminin sinirini oluşturan kuşaga uygulanan bir deprem öncesi çalişmasi/ Deprem Araştirma Enstitüsü Bülteni, 25, 5-27, Ankara.
Soysal H., Sipahioğlu S., Kolçak D., Altinok Y., 1981. Türkiye ve çevresinin tarihsel deprem katalogu. TÜBITAK project n. TBAG 341. Istanbul.

Szirtes S., 1909. Katalog der im Jahre 1905 registrierten seismichen Störungen. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Szirtes S., 1910. Katalog der im Jahre 1906 registrierten seismichen Störungen. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Szirtes S., 1912a. Katalog der im Jahre 1907 registrierten seismichen Störungen. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Szirtes S., 1912b. Registrierungen der besser ausgeprägten seismichen Störungen des Jahres 1907. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Szirtes S., 1913. Katalog der im Jahre 1908 registrierten seismichen Störungen. Publ. Bureau Cent. Assoc. Intern. Séismol. (ser. B), Strasbourg.
Tams E., 1908a. Geographische Verbreitung und erdwissenschaftliche Bedeutung der aus den Erdbeben-beobachtungen des Jahres 1903 sich ergebenden Epizentren. Beitr. Z. Geophys., 9, 237-337, Leipzig.
Tams E., 1908b. Die mikroseismischen Registrierungen einiger Beben des Jahres 1903. Beitr. Z. Geophys., 9, 509-46, Leipzig.
Tchalenko J. S., 1977. A reconnaissance of the seismicity and tectonics at the northern border of the Arabian Plate: Lake Van region. Revue de Géogr. Phys. Géol. Dyn., 19 (2), 189-207, Paris. Vincenz F. von, 1900. Reise nach den Steinkaskaden von Hierapolis, Kleinasien. Clobus, 77 (24), 377-83, Braunschweig.
Watzov S., 1903. Zemletresenia v Bulgaria 1901 g. Izdat. Chentraln. Meteorlolg. Stanitsa 2, Sofia.
Watzov S., 1911. Zemletresenia v Bulgaria priz’ 1909 g. Publ. Inst. Meteorlo. Cent. 10. Sofia.
Willmore P., Ḱarnik V., 1971. Manuel pratique des observatoires séismologiques. Publ. Intern. Seism. Cent., Edinburgh and World Data Centre report SE-20 (1979).
Yaroslavtsev I. N., 1929. Seismicheskaia deiatelnosti na Kubani s 1794 po 1927 g. Trudy Kubansk. Sel'skokhoz. Inst., 8, Krasnodar.
Contemporary maps used in the study : various sheets of :
: 200, 000 pre-1930 maps of Harita Umum Müdürlüḡü
: 400. 000 early 1900 s maps of R. Kiepert's series
1: 100, 0001901 map of W. Lynch
19th century Ottoman military maps and small-scale maps for specific areas.

[^0]: *) Karnik (1968)
 $\left.{ }^{* *}\right)$ Ambraseys and Melville (1982).

