

Aeolus – ESA's Wind Lidar Mission:

Objectives, Design & Status

Anne Grete Straume on behalf of Anders Elfving European Space Agency/ESTEC

Working Group on Space-based Lidar Winds Boulder, 28/04/2015

Atmospheric Dynamics of the Earth

Aeolus: Mission Objectives

Scientific objectives

- To improve the quality of weather forecasts;
- To advance our understanding of atmospheric dynamics and climate processes;

Explorer objectives

 Demonstrate space-based Doppler Wind LIDARs potential for operational use.

Observation means:

 Provide global measurements of horizontal wind profiles in the troposphere and lower stratosphere

Payload

ALADIN: Atmospheric LAser Doppler INstrument

Mission Design

Mission Parameters

- Orbit: sun-synchronous
- Mean altitude: ~400 km
- Local time: 18:00 ascending node
- Inclination: 96.97°
- Repeat cycle: 7 days / 109 orbits
- Orbits per day: ~16
- Mission lifetime: 3 years

Mission Design

Satellite Control

Ground station at Salmijärvi (Kiruna)

Satellite Control from ESOC Darmstadt (Germany)

Data Reception & Processing (1/2)

Data reception at Svalbard

Data processing at Tromsø

Aeolus: Instrument Data Processing

Aeolus: Measurement Principle (1/2)

- Direct detection UV Doppler wind Lidar operating at 355 nm and 50 Hz PRF in continuous mode, with 2 receiver channels
- Mie receiver to determine winds from aerosol & cloud backscatter
- Rayleigh receiver to determine winds from molecular backscatter
- The line-of-sight is pointing 35° from Nadir to obtain horizontal backscatter component
- The line-of-sight is pointing orthogonal to the ground track velocity vector to remove contribution from the satellite velocity

Aeolus: Measurement Principle (2/2)

Mie channel:

- Aerosol/cloud backscatter
- Imaging technique

Rayleigh channel:

- Molecular backscatter
- Double-edge technique

Aeolus: Observational Requirements

		PBL	Troposphere	Stratosphere
Vertical domain	[km]	0-2	2-16	16-20 (30)*
Vertical resolution ¹	[km]	0.5	1.0	2.0
Horizontal domain		Global		
Number of profiles	[hour-1]	>100		
Horizontal track data availability		> 90%		
Temporal sampling	[hr]	12		
Horizontal resolution / integration length ²	[km]	15 (target) – 100 (threshold)		
Horizontal sub-sample length	[km]	km scale		
Random error (HLOS Component)	[m/s]	1	2.5	3*
Systematic error (HLOS component)	[m/s]	0.7	0.7	0.7
Dynamic Range, HLOS	[m/s]	±150		
Error Correlation per 100 km		< 0.1		
Probability of Gross Error	[%]	5		
Timeliness		3		
Length of Observation Dataset	[yr]	3		

¹ 24 atmospheric samples for Mie & Rayleigh channel with 0.25km minimum vertical resolution

² L1B data: ~90 km horizontal integration length

Aeolus: ALADIN Instrument

Aeolus - ESA's Wind LIDAR Mission | Straume | Working Group on Scape-based Lidar Winds | 28/04/2015 | Slide 12

European Space Agency

Aeolus: ALADIN Laser Transmitter

- The Master Oscillator is a stable resonator with an endpumped rod. An RTP crystal q-switch is used. Pulses of about 5 mJ energy at 1065 nm are generated.
- Two diode pumped slab amplifiers generate about 350 mJ at 50 Hz pulse repetition frequency.
- These IR pulses are frequency tripled to the UV (355 nm) in two LBO crystals with ~40% efficiency.
- UV optics to shape and steer the output beam for compatibility with Aladin transmit optics.

Aeolus - ESA's Wind LIDAR Mission | Straume | Working Gro

Harmonic Conversion and UV section

Aeolus - ESA's Wind LIDAR Mission | Straume | Working Group on Scape-based Lidar Winds | 28/04/2015 | Slide 14

European Space Agency

Aeolus: Major events, Laser Test Experience

Aeolus - ESA's Wind LIDAR Mission | Straume | Working Group on Scape-based Lidar Winds | 28/04/2015 | Slide 15

European Space Agency

Laser Endurance Test in Vacuum Chamber 150 M shots

Optical Bench Assembly (OBA) with Transmit & Receive Optics (TRO)

Optical Bench Fluence Test

Transmit Optics

Laser transmitter

ALADIN Satellite

ESA UNCLASSIFIED - For Official Use

European Space Agency

Key validation test remaining

- 1. Instrument Functional Performance Tests (IFP) Aladin level
 - a. Primary and redundant lasers emitting via transmit optics and telescope to On Ground Support Equipment (OGSE). OGSE simulate atmospheric return signal through reception chain and spectrometers.
- 2. Aladin Electromagnetic Compatibility (EMC) test (Conducted emissions and susceptibility)
- 3. System level initial functional and performance tests (IST1 & SVT1)
- 4. Satellite vibration, acoustic and shock tests
- 5. Satellite EMC test
- 6. Satellite Thermal Vacuum Test (Tvac) including
 - a. Functional and performance tests for hot and cold cases (IST2&3)
 - b. ALADIN operating at full energy via OGSE
- 7. System level final functional and performance tests (IST4 & SVT2)

Aeolus: Mission Impact for Weather Forecast

Aeolus: Mission Impact for Weather Forecast

Summary conclusions by two impact studies led by ECMWF and KNMI

- ✓ Especially beneficial in the tropics and at high altitudes
- ✓ HLOS winds provides approximately 75% of the full wind vector information
- ✓ Impact on forecast quality is of the same order as the currently available radiosonde observation network
- ✓ Impact rather insensitive to random wind error variation
- ✓ Even small wind biases can be detrimental, so try to reduce biases!
 - Wind bias calibration efforts will be essential!

- ✓ More than 10 years of development challenges
- ✓ Invaluable experience has been gained

- ✓ More than 10 years of development challenges
- ✓ Invaluable experience has been gained
- ✓ Laser and LIDAR modifications are very time consuming

- ✓ More than 10 years of development challenges
- ✓ Invaluable experience has been gained
- ✓ Laser and LIDAR modifications are very time consuming
- √ The mission remains <u>worldwide</u> <u>unique</u>

- ✓ More than 10 years of development challenges
- ✓ Invaluable experience has been gained
- ✓ Laser and LIDAR modifications are very time consuming
- ✓ The mission remains <u>worldwide</u> <u>unique</u>
- ✓ Enthusiastic user communities anticipating break-through in weather forecast and climate research

- ✓ More than 10 years of development <u>challenges</u>
- ✓ Invaluable <u>experience</u> has been gained
- ✓ Laser and LIDAR modifications are very <u>time consuming</u>
- ✓ The mission remains <u>worldwide</u> <u>unique</u>
- ✓ Enthusiastic user communities anticipating break-through in weather forecast and climate research
- ✓ The Project and the Industrial team committed to complete Aladin by end 2015 and be <u>ready for launch in</u> 2016.

Aeolus - ESA's Wind LIDAR Mission | Straume | Working Group on Scape-based Lidar Winds | 28/04/2015 | Slide 27

Important link:

> Aeolus Living Planet web site: www.esa.int/The_Living_Planet_Programme/ADM-Aeolus

