

Development of Mobile Validation Lidar Facility at NASA/LaRC

LaR

Farzin Amzajerdian, Grady Koch, Bruce Barnes, Carl Mills, Michael Kavaya, and Upendra Singh

NASA Langley Research Center

Prepared For:

Meeting of the NOAA Working Group on Space-Based Lidar Winds

January 23-25, 2002 Key West, Florida

LaR

Validation Lidar (VALIDAR) Facility:

- Well-instrumented 48 ft long Trailer
 - > Hemispherical Scanner with 20 cm effective aperture
 - Elaborate Video System consisting of 2 sets of cameras, monitors, and recorders
 - ➤ Weather Station
 - ≻GPS Receiver
- Powerful state-of-the-art Coherent Doppler Lidar
 - 75 mJ, 5Hz Diode-pumped, Partially Conductively-Cooled Transmitter
 - ➢ 25 cm SPARCLE Telescope
- Real-time data processor and display

VALIDAR will be capable of validating:

- New advanced technologies for space wind lidar instruments
- New signal processing algorithms
- Procedures for calibrating space-based wind lidar instruments and verifying their measurements
- Coherent lidar performance models and developing system calibration procedures
- Atmospheric models and studying the atmospheric effects on lidar wind measurements (boundary layer dynamics, tropospheric wind structures, clouds, turbulence and wind shears, etc.)
- Performance of other lidar techniques

VALIDAR is currently operational using:

- -5 mJ, 100 Hz diode-pumped Transceiver
- Existing data acquisition and processing hardware and software from Wake Vortex project

 $I \land R$

This setup is being utilized for defining the lidar optical layout and developing optical alignment procedures.

LaRC

5 mJ, 100 Hz, 10 cm

LaRC

Data

&

Visitors

Rooms

Lidar System

Specifications of Transmitter Laser Under-Development

LaR

- Pulse energy > 75 mJ
- Pulse repetition frequency > 5 Hz
- Wavelength = $2.05 \ \mu m$
- Pulse width > 180 ns
- Spectrum = single frequency
- Beam quality < 1.3 x diffraction limit
- Partially Conductively-cooled Laser Head
 - Conductively-Cooled Diode Lasers and Water-Cooled Laser Rod

Conductively-Cooled Head Design LaRC-

Partially Conductively-Cooled Head

Laser rod is cooled with water

Fully Conductively-Cooled Head

Data Acquisition System Capabilities

LaR

- 12 Hz pulse repetition frequency (single or double pulse)
- 1 GSample/sec Sample Rate
- Max range (LOS) = 30 km
- Three processing modes:

Mode 1

- Wind velocity every 30 m; 1.95 m/sec velocity resolution
- ~1000 512-pt FFTs (200 real pts plus zero padding)

<u>Mode 2:</u>

- Velocity resolution of 0.05 m/sec
- ~12 16,384-pt FFTs (0.06 m/sec res.) or ~6 32,768-pt FFTs (0.03 m/sec res.)

<u>Mode 3:</u>

– TBD

- Data time-tagging and recording
- Real-time data display and scanner control

System Block Diagram

Signal Processing Data Flow

Schedule

-LaRC

Lidar Receiver	June
75 mJ, 5Hz Transmitter Laser	July
Data Acquisition/Processor/Display	July
Lidar Integration	September
Open for Business	October

IaR

Acknowledgements

Steve Mango, IPO Ramesh Kakar, NASA/Code Y Tim Miller, NASA/MSFC Neil O'Connor, NASA/LaRC James Barnes, NASA/LaRC