

Technology Assessment Studies in support of GTWS

By the TAT Direct Detection subcommittee members:

- 1. Bruce M. Gentry, NASA / GSFC, bruce.gentry@gsfc.nasa.gov
- 2. Matt McGill, NASA/GSFC
- 3. Barry Rye, NOAA ETL
- 4. Dave Emmitt, SWA

- Technology assessment studies initiated to assess 'do-ability' of GTWS draft requirements.
 - Establish performance baseline and scaling relationships
 - Evaluate technology tallpoles
- Included evaluation of Direct Detection Doppler
- Lidar approaches proposed for space
 - Fringe imaging
 - Double edge technique
- Fidelity of the designs top level to allow inclusion of new technologies, approaches
- Provide input to GTWS DDDL end-to-end instrument and mission design studies (see Ken Miller's talk tommorrow)

- Measured signal is proportional to intensity
- High resolution optical filter used to measure Doppler shift
- Draws on technology used with other space lidars (MOLA, GLAS, VCL, Picasso)
 - Well developed solid state lasers
 - Large aperture 'light bucket ' telescopes
 - Photon counting detectors
- Shot averaging to increase S/N
- Utilizes aerosol or molecular backscatter
 - Molecular provides clear air winds in free troposphere/over oceans
- 2 primary implementations 'Double Edge' and 'Fringe Imaging'

- High spectral resolution all solid state laser transmitter
 - Well developed diode-pumped Nd:YAG technology for small, efficient, long-life, space qualified laser
- High spectral resolution optical filters
 - High resolution, high throughput, stable, tunable optical filters for Doppler wind measurement
- Photon counting detectors and arrays at 355 nm and 1064 nm
 - Low noise, high quantum efficiency detectors suitable for space applications
- Novel large aperture scanning lidar receivers
 - Large aperture, 'light bucket' telescope technologies (deployables, membrane optics)
 - Holographic optical elements provide low mass, simplified scanning, high efficiency at specific wavelength, narrowband filtering

DDDL Point design ground rules

- Consider both types of direct detection receivers, double edge and fringe imaging, optimized for aerosol and/or molecular backscatter.
- Use lidar model of McGill et al* as baseline. Cross check with other models (SWA and Gentry) to verify.
- Use Emmitt atmospheric models, including background and enhanced aerosol modes, to generate backscatter and attenuation profiles- NO CLOUDS.
- Fix instrument and spacecraft parameters and vary total laser energy delivered to the TSV to achieve velocity accuracy called out in science requirements at <u>all</u> range gates in the measurement range for a single LOS.
- Total energy is function of laser pulse energy and rep rate and related to average power via the integration time per LOS perspective.
- Max integration time is determined by max horizontal sample (100 km/7.5 km/s =13.33 sec) or by dwell time determined by number of LOS perspectives required (e.g. 4 LOS \rightarrow 11 sec; 8 LOS \rightarrow 5 sec).
- Performance trades can then be estimated by scaling using lidar equation

*McGill, M.J. ,W.D. Hart, J.A. McKay, and J.D. Spinhirne (1999), "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability,", *Applied Optics*, 38, 6388-6397.

1. Signal=
$$\frac{N_{s} EA\eta \tau_{opt} \tau_{atm}^{2} (\lambda) [\beta_{a}(\lambda) + \beta_{m}(\lambda)] \Delta R}{hv R^{2}}$$

- 2. S/N $\propto \sqrt{\text{Signal}}$
- 3. δv ∝ (S/N)⁻¹
 - N_s = number of laser shots A= telescope area E= laser pulse energy η = detection efficiency τ_{opt} = optical efficiency hv= photon energy

 $\tau_{atm}(\lambda)$ =1 way atmos transmission $\beta_a(\lambda)$ = aerosol backscatter $\beta_m(\lambda)$ =molecular backscatter R= range to sample volume ΔR = range resolution

Two way transmission through the atmosphere 45 deg zenith angle

B. Gentry/GSFC

Parameters assumed constant in point design study

PARAMETER	VALUE	
molecular 1/e-width at 355 nm ($\Delta\lambda$ M)	9.67x10-4 nm	
	(2.30 GHz)	
Satellite altitude	400 km	
Zenith angle (45 degrees	
scan pattern	8 L-O-S	
Telescope collecting area	1.227 m ²	
Telescope field of view (full angle)	200 μrad	
Vertical resolution	1 km from 3-20 km	
	0.5 km from 0-3 km	
Max allowed wind error without (with)	3 m/s (2.91) from 3-20 km	
turbulence- LOS-P	2 m/s (1.73) from 0-3 km	

Parameters for FI and DEDG aerosol receivers

	DEDG SYSTEM	FI SYSTEM
wavelength (nm)	1064	355
laser 1/e-width (ΔλL)	1.51x10-4 nm (40.0 MHz)	2.10x10-6 nm (4.99 MHz)
HRE spacing (d)	5.72 cm	30.0 cm
HRE plate reflectivity (R)	93%	88%
HRE reflective finesse (FR)	43.28	24.56
HRE etalon defect (∆dD)	2.0 nm	2.0 nm
HRE defect finesse	113.2	37.7
HRE aperture finesse (FA)	43.28	29.09
HRE effective finesse (FEFF)	27.44	16.80
loss per plate (L)	0.2%	0.2%
HRE free spectral range ($\Delta\lambda$ FSR)	9.89x10-3 nm (2.62 GHz)	2.10x10-4 nm (500 MHz)
optical efficiency (T _o) (includes DF, but not etalons)	34%	34%
filter efficiency (LRE, MRE, absorbers)	74%	74%
overall optical efficiency (T _o)	25.2%	25.2%
integrated solar bandpass (F _w)	xxx pm	xxx pm
detector channels (nC)		32
# orders imaged		1.1
offset in etalon HWHH	1.00 (47.76 MHz)	
beamsplitter efficiency (T _{BS})	45%	
detector efficiency (QE)	4%	40%

Parameters for FI and DEDG molecular receivers

	DEDG SYSTEM	FI SYSTEM
wavelength (nm)	355	355
laser 1/e-width (ΔλL)	2.25x10-5 nm (53.6 MHz)	2.25x10-5 nm (53.6 MHz)
HRE spacing (d)	1.25 cm	1.8 cm
HRE plate reflectivity (R)	75.2%	66%
HRE reflective finesse (FR)	10.98	7.51
HRE etalon defect (∆dD)	3.15 nm	3.15 nm
HRE defect finesse	24	24
HRE aperture finesse (FA)	9.27	32.
HRE effective finesse (FEFF)	6.84	7.20
loss per plate (L)	0.2%	0.2%
HRE free spectral range ($\Delta\lambda$ FSR)	5.04x10-3 nm (12.0 GHz)	3.5x10-3 nm (8.33 GHz)
optical efficiency (T _o) (includes DF, but not etalons)	34%	34%
filter efficiency (LRE, MRE, absorbers)	74%	74%
overall optical efficiency (T _o)	25.2%	25.2%
integrated solar bandpass (F_{W})	2.66 pm	3.65 pm
detector channels (nC)		32
# orders imaged		1.
offset in etalon HWHH	3.10 (2.72 GHz)	
beamsplitter efficiency (T _{BS})	48%	
detector efficiency (QE)	40%	40%

Direct Detection Molecular System Performance

- The basic scaling for a molecular direct detection (DD) Doppler lidar is well established and prediction of performance in an idealized atmosphere (no aerosols or clouds) is straight forward.
- Velocity error scales directly with S/N (i.e. photons detected)
 Performance of an DD aerosol channel is dependent on variability of aerosol backscatter but in all cases studied is of marginal benefit.*
 Using a generic point design for a system at 355 nm it appears the GTWS draft requirements will require a system with a large EAP. Principle drivers include:
 - 1. Performance in PBL
 - 2. Requirements for 8 LOS (EAP increases linearly with # of LOS)
 - 3. Dwell time (horizontal sampling)
- Technology advances will be required to meet future. Emphasis on
 - Lasers
 - Telescope and scanning optics
 - Detectors (high QE, low noise) -single element and arrays

* Further Study Required