INITIAL ASSESSMENT OF THE PERFORMANCE OF THE FIRST WIND LIDAR IN SPACE ON AEOLUS

Oliver Reitebuch

DLR, Institute of Atmospheric Physics, Oberpfaffenhofen, Germany

Christian Lemmerz¹, Oliver Lux¹, Uwe Marksteiner¹, Stephan Rahm¹, Fabian Weiler¹, Benjamin Witschas¹, Markus Meringer², Karsten Schmidt², Dorit Huber³, Ines Nikolaus⁴, Alexander Geiss⁵, Michael Vaughan⁶, Alain Dabas⁷, Thomas Flament⁷, Hugo Stieglitz⁷, Lars Isaksen⁸, Michael Rennie⁸, Jos de Kloe⁹, Gert-Jan Marseille⁹, Ad Stoffelen⁹, Denny Wernham¹⁰, Thomas Kanitz¹⁰, Anne-Grete Straume¹⁰, Thorsten Fehr¹⁰, Jonas von Bismarck¹¹, Rune Floberghagen¹¹, Tommaso Parrinello¹¹

¹DLR, Institute of Atmospheric Physics, ²DLR, Remote Sensing Technology Institute, ³DoRIT, ⁴University of Applied Sciences, ⁵Ludwig-Maximillians-University, ⁶ OLA, ⁷Météo-France, ⁸ECMWF, ⁹KNMI, ¹⁰ESA-ESTEC, ¹¹ESA-ESRIN

Overview

- First results from Aeolus and ground-based validation
- ALADIN performance and random errors
- Main causes for systematic errors and their correction

ALADIN – the first wind lidar in space since August 2018

- First European lidar in space after 20 years of development challenges
- First wind lidar and HSRL in space worldwide unique mission
- Highest power-aperture product for a lidar in space (40-80 mJ / 50 Hz / Ø 1.5 m)
- High-power, ultraviolet (UV) laser in space (@ 354.8 nm) with stringent requirements on frequency stability of 6-8 MHz (shot-to-shot)
- Doppler wind lidar principle straightforward but incredible small effect

Doppler-Shift:
$$\Delta f = 2 f_0 \frac{V_{LOS}}{C}$$

relative Doppler shift $\Delta f/f_0 \approx 10^{-8}$ 1 m/s (LOS) \Leftrightarrow 5.64 MHz \Leftrightarrow 2.37 fm

First wind measurements after 3 weeks in orbit

Comparison of Aeolus to DWD Radar Wind Profiler

Comparison from Sept 2018 – mid March 2019 for 4 DWD windprofilers in Germany within 100 km

Overview

- First results from Aeolus and ground-based validation
- ALADIN performance and random errors
- Main causes for systematic errors and their correction

What causes enhanced Rayleigh wind random errors?

- Lower Rayleigh backscatter signals by factor of 2.5 – 3.0
 => higher random errors by factor 1.6 - 1.7 resulting in 4 m/s Rayleigh wind random error (L2B O-B)
 - Lower laser energy of 50 mJ to 65 mJ than expected of 80 mJ: factor 1.23 to 1.60
 - higher laser divergence, which is clipped at the instrument field stop limiting the field-of-view to only 18 µrad
- Switch to second laser on June 26, 2019 with a target energy of 80 mJ
 Rayleigh random error 3 m/s

Fig. U. Marksteiner, K. Schmidt (DLR)

- First time of successful operation of a high-power UV laser in space over 10 m => proves concept for oxygen cleaning approach for laser optics
- 65 mJ for first laser achieved, UV energy decreases at a rate of about 1 mJ per week:
 but some issues with laser internal photodiode, optimizations can increase energy levels

Laser frequency stability of 5-7 MHz (UV) achieved

ALADIN optical setup

- lower laser energy of 50-65 mJ vs.
 80 mJ accounts for factor 1.2 to 1.6
- higher laser beam divergence and nonperpendicular incidence angle resulting in clipping of backscatter signal at receiver field stop => accounts for factor ≈ 2
- field stop limits field of view to only 18 µrad in the atmosphere => small footprint of Ø 7 m on ground
- no indication of optics degradation in receive path
- Rayleigh random error is dominated by signal shot noise and by seasonal and orbital varying solar background

10 / 18

View into the ALADIN Ø1.5 m telescope

from Aeolus blog https://aeolusweb.wordpress.com/

11 / 18

Space Lidar Winds WG – 10 July 2019

Overview

- First results from Aeolus and ground-based validation
- ALADIN performance and random errors
- Main causes for systematic errors and their correction

12/18

What causes the systematic errors?

Combination of 3 unexpected error sources with different temporal characteristics

- Higher dark current rates for some "hot" pixels => affects specific range gates; currently 7 on Mie and 8 pixels on Rayleigh ACCD
- 2. Slow drifts in the illumination of the Rayleigh/ Mie spectrometers causing a slowly, linear drifting constant bias

13/18

Use of ground-returns to correct for residual bias

Correction of "hot pixels" for ALADIN in June 2019

Rayleigh HLOS wind in m/s

15/18

Space Lidar Winds WG – 10 July 2019

The Aeolus Data Innovation and Science Cluster DISC

Summary and Conclusion

- From lidar perspective it was demonstrated that:
 - a space-borne wind lidar can measure atmospheric winds by use of molecular Rayleigh and cloud Mie backscatter
 - a powerful UV laser can be operated in space with high frequency stability
- One objective of successful technical proof for Earth Explorer mission is achieved
- The Rayleigh wind random errors are higher than expected due to lower signal levels caused by lower laser energy and signal loss in optical receive path
- The systematic error is currently higher than required, but precise instrument characterization and use of ground returns will allow bias corrections; "hot" pixel correction was recently implemented for real-time data stream

Outlook

- #1 priority: bias correction and re-processed dataset for impact studies, instrument characterization and calibration after switchon of 2nd laser on June 26, 2019
- Airborne validation campaigns are planned September 2019 (Iceland), and June 2019 (Cape Verde) with ground-based lidars and wind-lidars/-radars on DLR Falcon, French Falcon and possibly NASA DC-8
- Aeolus follow-on missions are discussed in Europe (EUMETSAT, ESA), but need international collaboration to realize 3 wind lidars in orbit (Marseille et al 2008, Tellus) to close gap for winds in WMO global observing system

18 /

LR Space Lidar Winds WG – 10 July 2019

Temporal evolution of Aeolus bias and random error

Rayleigh clear

