

Assimilation of Doppler Wind Lidar (DWL) Wind Profiles for Improved Severe Weather Forecasts

Zhaoxia Pu

Department of Atmospheric Sciences
University of Utah, USA

G. David Emmitt

Simpson Weather Associates, Inc.,

Acknowledgements

Zhiqiang Cui Drs. Robert Atlas, Steve Greco, Bruce Gentry, Belay Demoz

Working Group Meeting for Space Lidar Winds Hampton, Virginia
July 10-11, 2019

Background

Winds = Dynamics of Atmosphere

Winds = Primary driver of evolution of atmosphere

Wind data available in weather/climate analysis

- Radiosonde
- Satellite-derived atmospheric motion vectors (AMVs)
- Radar radial velocity
- Ocean surface winds from the satellites (e.g., CYGNSS, ASCAT)
- Surface or local measurements from some special networks and field campaigns

There is a lack of wind profile measurements

Significant efforts and development have been devoted for potential space-based wind mission by US scientists.

Baker et al. (2014) BAMS

In this talk

- > Summarizes studies we have been done to explore the options and influences of wind profile measurements on numerical prediction of high-impact weather systems
 - □ Data assimilation and observing system simulation experiments (OSSEs) using ground, airborne, and satellitebased Doppler Wind Lidar (DWL) platforms for more than a decade
- ➤ Results from recent data impact study with DAWN wind profiles during NASA Convective Processes Experiment (CPEX)
- Concluding remarks and ongoing work

Airborne DWL profiles, collected during TPARC/TCS-08 from ONR P-3

Case

Typhoon Nuri over the Western Pacific

 Wind profiles with 50 m vertical and 1 km horizontal resolution

Time period of data

2330UTC 16 August to 0200UTC 17 August 2008 (about 3-h)

Life cycle: 17Aug – 22 Aug 2008

Typhoon Nuri

Impact of Airborne Doppler Wind Lidar Profiles on Numerical Simulation of Tropical cyclones: First snapshot with Typhoon Nuri (2008)

Zhaoxia Pu and Lei Zhang, Department of Atmospheric Sciences, University of Utah G. David Emmitt, Simpson Weather Associates, Inc.

Model: Mesoscale community Weather Research and Forecasting (WRF) model

Data: Doppler wind Lidar (DWL) profiles during T-PARC for the period of 0000UTC -0200

UTC 17 August 2008

Forecast Period: 48-h forecast from 0000UTC 17 August 2008 to 0000UTC 19 August 2008

Control: without DWL data assimilated into the WRF model.

Data Assimilation: With DWL data assimilated into the WRF model

Data impact: Control vs. Data assimilation

Pu et al. 2010. GRL

Ground-based Lidar Winds (B. Gentry and B. Demoz, NASA/GSFC) GLOW (Goddard Lidar Observatory for Winds) Lidar Wind Observations

International H₂ O Program (IHOP) field program: May and June 2002

Wind profile Resolution: 10 minutes; 100m below 3km and 200m above 3km of the height over 240 h of data in 35 days

Observations at Homestead site, OK during 12-13 June 2002

June 12 2002 Convection Case

Composite radar reflectivity observations

2100 UTC 12 June 2002

2300 UTC 12 June 2002

0100 UTC 13 June 2002 0300 UTC 13 June 2002

CTRL (Left) Vs. 4DVAR (right): Simulated Radar Reflectivity

Quantitative Precipitation Forecasting Scores

Ratio of equitable threat scores (ETS)
4DVAR vs. CTRL

Zhang and Pu 2011, MWR

Satellite-based Doppler Wind Lidar

Regional OSSEs

Pu et al. 2017

Exp. I: First Snapshots of the Satellite-based DWL Observations

3rd generation DWL configure (Dr. G. D. Emmitt)

Case 1: No cloud impact

7/10/19

Impact of Satellite-based DWL Observations

A regional OSSE study

Impacts from assimilation of "DWL" profiles

(48-h FCST)

Zhang and Pu (2010) Adv. Meteor.

Vertical resolution: 250m below 2km; 1 km above 2km

Accumulated 3-h rainfall forecasts at 1200 UTC 19 Aug.

14

NASA CPEX June 2017

Doppler Aerosol WiNd (DAWN) Lidar

Satellite infrared brightness temperature & ERA5 900hPa height

WRF model domains & DAWN data sample

Data Assimilation methods

NCEP GSI-Based 3D Ensemble-Variational Hybrid Data Assimilation

$$J(x) = \frac{1}{2} \left(x - x^b \right)^T (\beta_1 B_1 + \beta_2 B_2)^{-1} \left(x - x^b \right) + \frac{1}{2} \left(y^0 - H(x) \right)^T R^{-1} \left(y^0 - H(x) \right)$$

 B_1 : Static, pre-generated matrix using NMC method

 B_2 : A flow-depend matrix derived from ensemble forecasts

Weighting factors: β_1 and β_2

NCEP GSI 3D Variational Data Assimilation (3DVAR)

When $\beta_2 = 0$

Area Averaged Divergence

Compare with radiosonde obs.

Cui et al. (2019)

Case 1, 12 UTC 16 June 2017

Rainfall rates and QPFs Case 1

Cui et al. (2019)

Rainfall rates and QPFs Case 2

Cui et al. (2019)

Concluding remarks and ongoing work

- Space-based 3-D wind profiling measurements are essential for improving high-impact severe weather events
- Both Ground-based and airborne Doppler wind lidar measurements are valuable for high-impact weather forecasting. They should be actively used in the future field campaigns and operational missions
- Assimilation of DAWN wind profiles results in improved numerical simulations of tropical convection during NASA CPEX
- Ongoing studies emphasize 1) NOAA/HJRD/P3 lidar winds for hurricanes and 2) Aeolus wind data

European Space Agency - Aeolus

NOAA/HRD/P3

Thank you very much for your attention!

Zhaoxia.Pu@utah.edu