Estimating Optical Flows in Satellite Imagery

Working Group Meeting for Space Lidar Winds
Presenter: **Thomas Vandal**Contributions from: Ramakrishna Nemani

NASA Ames / BAERI

July 11 2019

Roadmap

Introduction to Optical Flow

Temporal Interpolation of Satellite Imagery

Extracting Pixel-wise Flow Vectors

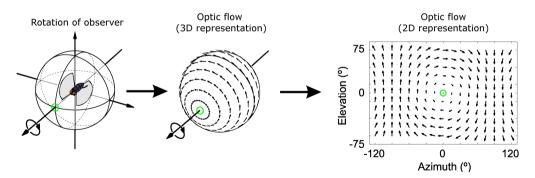
Conclusions

Introduction to Optical Flow

Introduction to Optical Flow

Optical Flow is the distribution of apparent velocities of movement of brightness patterns in an image. [Horn and Schunck, 1981]

Arises from the relative movement of an object from a viewer.



Optical Flow Assumptions

Let E(x, y, t) denote the brightness of pixel (x, y) at time t in a sequence of 2D images.

Assume the brightness of a particular point is constant, $\frac{dE}{dt}=0$ Using the chain rule,

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$
 (1)

The goal is to estimate the velocities in the x and y directions: $\frac{dx}{dt}$ and $\frac{dy}{dt}$ Derivatives can be estimated using sequential images with numerical approximations.

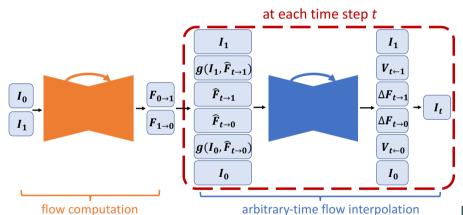
Application I: Object Tracking [Bertinetto et al., 2016]

Goal: Tracking a moving object over a sequence of images. Optical flow is used to ensure the same object is tracked through multiple images.

Application II: Video Frame Interpolation [Jiang et al., 2018]

Link: https://www.youtube.com/watch?v=MjViy6kyiqs

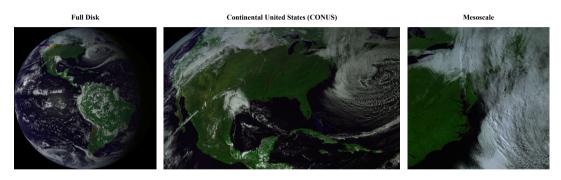
Super SloMo



[Jiang et al., 2018]

Temporal Interpolation of Satellite Imagery

Spatial and Temporal Resolutions of GOES-16



Spatial - 500 meters (visible), 1 km (near infrared), 2km (infrared)
Temporal - 10/15 min full disk, 5 minute CONUS, 30-60 second mesoscale

Temporal Interpolation of GOES-16

Mesoscale

- ► Flex mode allows the satellite to capture a user defined region to monitor major weather and environmental events.
- Coverage of 1000km by 1000km every 30 seconds (or two boxes every 1 minute).

Problem: Can we generate 1 minute full-disk coverage using machine learning and optical flow?

Approach: Apply the Super SloMo optical methodology by learning optical flows from mesoscale to interpolate between sequences of images.

Intermediate Frame Interpolation

Let $I_0, I_1, I_t \in \mathcal{R}^{H \times W \times C}$ such that $t \in (0, 1)$.

Construct an intermediate frame \hat{I}_t from I_0 and I_1 :

$$\hat{I}_t = \alpha \cdot g(I_0, F_{0 \leftarrow t}) + (1 - \alpha) \cdot g(I_1, F_{1 \leftarrow t})$$
(2)

 $F_{0 \leftarrow t} = \text{Flow from } I_t \text{ to } I_0$ $F_{1 \leftarrow t} = \text{Flow from } I_t \text{ to } I_1$ q = backward warping function

Occlusion

Occlusion reasoning can be used to estimate the states of atmospheric variables over a static land surface by applying visbility maps, $V_{t\to 0}$ and $V_{t\to 1}$.

ie. For a given intermediate frame and pixel, is there cloud cover?

$$\hat{I}_t = \frac{1}{Z} \cdot \left((1-t) \cdot V_{t \to 0} \cdot g(I_0, F_{0 \leftarrow t}) + t \cdot V_{t \to 1} \cdot g(I_1, F_{1 \leftarrow t}) \right) \tag{3}$$

where $Z = (1 - t) \cdot V_{t \to 0} + t \cdot V_{t \to 1}$ is a normalization factor.

Deep neural networks are currently the state of the art for estimating $V_{t\to 0}, V_{t\to 1}, F_{0\leftarrow t}$, and $F_{0\leftarrow t}$.

Model Setup

Flow Network:

$$\hat{F}_{0\leftarrow 1}, \hat{F}_{1\leftarrow 0} = H_{\text{flow}}(I_0, I_1).$$
 (4)

$$\hat{F}_{0 \leftarrow t} = -(1 - t)tF_{0 \leftarrow 1} + t^2F_{1 \leftarrow 0}$$

$$\hat{F}_{1 \leftarrow t} = (1 - t)^2F_{0 \leftarrow 1} - t(1 - t)F_{1 \leftarrow 0}$$
(5)

Interpolation Network:

$$V_{t\to 0}, V_{t\to 1}, \Delta \hat{F}_{0\leftarrow t}, \Delta \hat{F}_{1\leftarrow t} = H_{\text{Interp}}(I_0, I_1, \hat{F}_{0\leftarrow t}, \hat{F}_{1\leftarrow t}, g_0, g_1). \tag{6}$$

$$F_{0 \leftarrow t} = \hat{F}_{0 \leftarrow t} + \Delta \hat{F}_{0 \leftarrow t}$$

$$F_{1 \leftarrow t} = \hat{F}_{1 \leftarrow t} + \Delta \hat{F}_{1 \leftarrow t}$$
(7)

Neural Network Architecture - UNet



Learning

Overall loss consists of a combination of reconstruction error, warping error, and smoothness regularization:

$$I = \lambda_r I_r + \lambda_w I_w + \lambda_s I_s. \tag{8}$$

Reconstruction loss is the euclidean distance between observed and predicted intermediate frames:

$$I_r = \frac{1}{N} \sum_{i=1}^{N} ||\hat{I}_{t_i} - I_{t_i}||_2.$$
 (9)

Warping loss is used to optimize estimated optical flows between input and intermediate frames:

$$I_{W} = ||I_{0} - g(I_{1}, F_{0 \to 1})|| + ||I_{1} - g(I_{0}, F_{1 \to 0})|| + \frac{1}{N} \sum_{i=1}^{N} ||I_{t_{i}} - g(I_{0}, F_{0 \to t_{i}})||_{2} + \frac{1}{N} \sum_{i=1}^{N} ||I_{t_{i}} - g(I_{1}, F_{1 \to t_{i}})||_{2}$$

$$(10)$$

Smoothness loss ensures locally smooth flows:

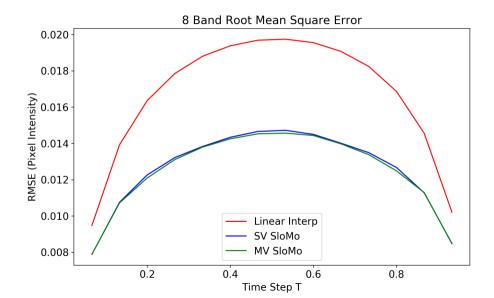
$$I_{s} = ||\Delta F_{0 \to 1}||_{1} + ||\Delta F_{1 \to 0}||_{1}$$
(11)

Results I

Table: Root mean square error (RMSE) over a held out test set of every 5 days in 2019 mesoscale data for a 15 minute temporal enhancement.

	Linear	SV-SloMo	MV-SloMo	Linear	SV-SloMo	MV-SloMo
index						
1	0.0232	0.0172	0.0172	0.0231	0.0171	0.0170
2	0.0329	0.0260	0.0261	0.0329	0.0261	0.0261
3	0.0288	0.0218	0.0218	0.0287	0.0217	0.0216
4	_	_	_	0.0095	0.0059	0.0058
5	_	_	_	0.0214	0.0168	0.0167
6	_	_	_	0.0137	0.0100	0.0098
7	_	_	_	0.0017	0.0012	0.0011
8	_	-	-	0.0026	0.0019	0.0018
3 Band Mean	0.0283	0.0217	0.0217	0.0282	0.0216	0.0216
8 Band Mean	-	-	-	0.0180	0.0136	0.0135

Results II



Video

Link: https://www.youtube.com/watch?v=NeMXPQw3CJU

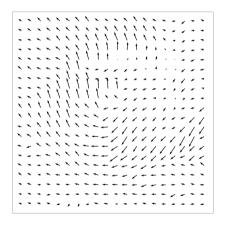
Extracting Pixel-wise Flow Vectors

Flow Vectors

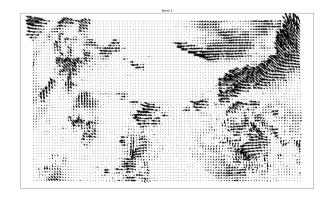
Flow vectors, $F_{0\leftarrow t}$ and $F_{1\leftarrow t}$, learned from the interpolation model has the following properties:

- ► Each *F* consists of *u* and *v* components representing horizontal and vertical velocities
- Direction is extracted from u and v
- Locally smooth vector magnitude and direction
- ► Each pixel is 2km, temporal period is 15 minutes (u * 2/15 * 4 = km/hour)

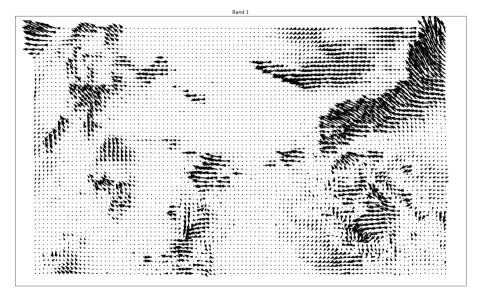
Mesoscale - Hurricane Irma - September 8 2017



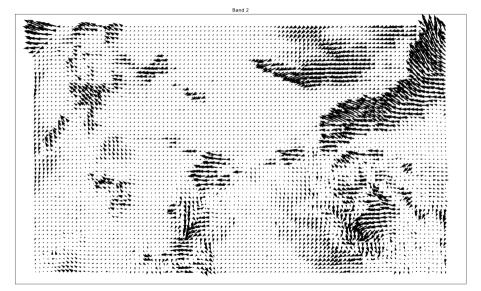
CONUS - September 8 2017



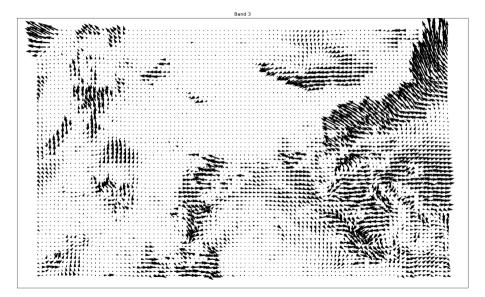
Band 1 - Visible - Blue



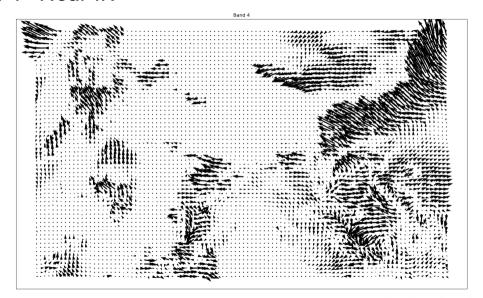
Band 2 - Visible - Red



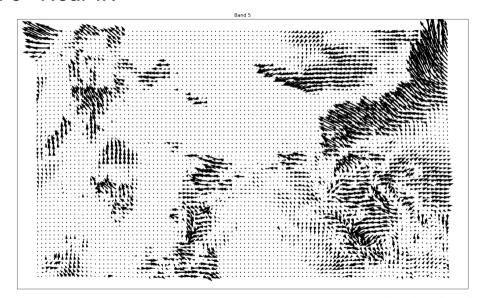
Band 3 - Near-IR



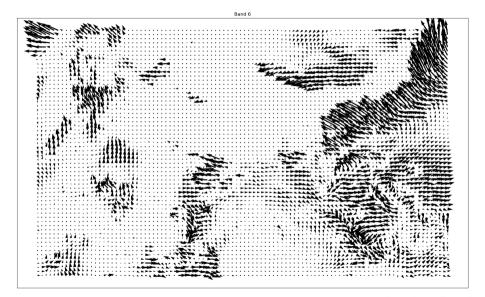
Band 4 - Near-IR



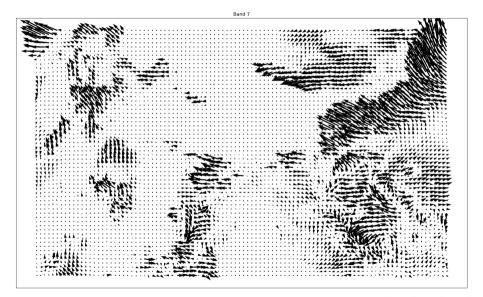
Band 5 - Near-IR



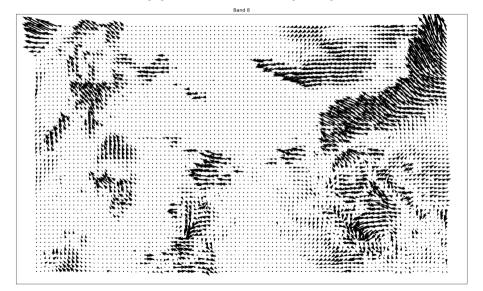
Band 6 - Near-IR



Band 7 - IR



Band 8 - Near-IR - Upper-Level Tropospheric Water Vapor



Conclusions

Conclusions

1. Key Points

- Optical flows are numerically estimated with deep neural networks
- Flow vectors are used to track the movement of objects in images, such as clouds
- ► The intermediate frame interpolation approach can estimate flow vectors for any time in the domain

2. Next Steps

- ► How are the flow vectors related to wind? What exactly is being captured?
- Use ground truth data (Aeolus?) to understand the vectors
- Simplify optical flow model
- 3. Optical flow applied to nowcasting of geostationary data is another promising direction.

References I

- Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. (2016). Fully-convolutional siamese networks for object tracking. In *European conference on computer vision*, pages 850–865. Springer.
- Horn, B. K. and Schunck, B. G. (1981). Determining optical flow.

 Artificial intelligence, 17(1-3):185–203.
- Jiang, H., Sun, D., Jampani, V., Yang, M.-H., Learned-Miller, E., and Kautz, J. (2018).
 - Super slomo: High quality estimation of multiple intermediate frames for video interpolation.
 - In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9000–9008.