
1/34

Estimating Optical Flows in Satellite Imagery

Working Group Meeting for Space Lidar Winds
Presenter: Thomas Vandal

Contributions from: Ramakrishna Nemani

NASA Ames / BAERI

July 11 2019



2/34

Roadmap

Introduction to Optical Flow

Temporal Interpolation of Satellite Imagery

Extracting Pixel-wise Flow Vectors

Conclusions



3/34

Introduction to Optical Flow
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Introduction to Optical Flow
Optical Flow is the distribution of apparent velocities of movement of brightness
patterns in an image. [Horn and Schunck, 1981]
Arises from the relative movement of an object from a viewer.
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Optical Flow Assumptions
Let E(x, y, t) denote the brightness of pixel (x, y) at time t in a sequence of 2D
images.
Assume the brightness of a particular point is constant, dEdt = 0
Using the chain rule,

∂E
∂x

dx
dt +

∂E
∂y

dy
dt +

∂E
∂t = 0 (1)

The goal is to estimate the velocities in the x and y directions: dxdt and dy
dt

Derivatives can be estimated using sequential images with numerical
approximations.
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Application I: Object Tracking [Bertinetto et al., 2016]
Goal: Tracking a moving object over a sequence of images. Optical flow is used

to ensure the same object is tracked through multiple images.
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Application II: Video Frame Interpolation
[Jiang et al., 2018]

Link: https://www.youtube.com/watch?v=MjViy6kyiqs


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=MjViy6kyiqs
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Temporal Interpolation of Satellite Imagery
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Spatial and Temporal Resolutions of GOES-16

Full Disk Continental United States (CONUS) Mesoscale

Spatial - 500 meters (visible), 1 km (near infrared), 2km (infrared)
Temporal - 10/15 min full disk, 5 minute CONUS, 30-60 second mesoscale
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Temporal Interpolation of GOES-16

Mesoscale
I Flex mode allows the satellite to capture a user defined region to monitor

major weather and environmental events.
I Coverage of 1000km by 1000km every 30 seconds (or two boxes every 1

minute).
Problem: Can we generate 1 minute full-disk coverage using machine learning
and optical flow?
Approach: Apply the Super SloMo optical methodology by learning optical flows
from mesoscale to interpolate between sequences of images.
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Intermediate Frame Interpolation

Let I0, I1, It ∈ RH×W×C such that t ∈ (0, 1).
Construct an intermediate frame Ît from I0 and I1:

Ît = α · g(I0, F0←t) + (1− α) · g(I1, F1←t) (2)
F0←t = Flow from It to I0
F1←t = Flow from It to I1
g = backward warping function
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Occlusion

Occlusion reasoning can be used to estimate the states of atmospheric
variables over a static land surface by applying visbility maps, Vt→0 and Vt→1.
ie. For a given intermediate frame and pixel, is there cloud cover?

Ît =
1
Z ·
(
(1− t) · Vt→0 · g(I0, F0←t) + t · Vt→1 · g(I1, F1←t)

)
(3)

where Z = (1− t) · Vt→0 + t · Vt→1 is a normalization factor.

Deep neural networks are currently the state of the art for estimating
Vt→0,Vt→1, F0←t, and F0←t.
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Model Setup
Flow Network:

F̂0←1, F̂1←0 = Hflow(I0, I1). (4)

F̂0←t = −(1− t)tF0←1 + t2F1←0

F̂1←t = (1− t)2F0←1 − t(1− t)F1←0
(5)

Interpolation Network:

Vt→0,Vt→1,∆F̂0←t,∆F̂1←t = HInterp(I0, I1, F̂0←t, F̂1←t, g0, g1). (6)

F0←t = F̂0←t + ∆F̂0←t

F1←t = F̂1←t + ∆F̂1←t
(7)
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Neural Network Architecture - UNet
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Learning
Overall loss consists of a combination of reconstruction error, warping error, and smoothness
regularization:

l = λrlr + λwlw + λsls. (8)

Reconstruction loss is the euclidean distance between observed and predicted intermediate
frames:

lr =
1
N

N∑
i=1
||̂Iti − Iti ||2. (9)

Warping loss is used to optimize estimated optical flows between input and intermediate frames:

lw = ||I0 − g(I1, F0→1)||+ ||I1 − g(I0, F1→0)||

+
1
N

N∑
i=1
||Iti − g(I0, F0→ti)||2 +

1
N

N∑
i=1
||Iti − g(I1, F1→ti)||2

(10)

Smoothness loss ensures locally smooth flows:

ls = ||∆F0→1||1 + ||∆F1→0||1 (11)
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Results I

Table: Root mean square error (RMSE) over a held out test set of every 5 days in 2019
mesoscale data for a 15 minute temporal enhancement.

Linear SV-SloMo MV-SloMo Linear SV-SloMo MV-SloMo
index

1 0.0232 0.0172 0.0172 0.0231 0.0171 0.0170
2 0.0329 0.0260 0.0261 0.0329 0.0261 0.0261
3 0.0288 0.0218 0.0218 0.0287 0.0217 0.0216
4 – – – 0.0095 0.0059 0.0058
5 – – – 0.0214 0.0168 0.0167
6 – – – 0.0137 0.0100 0.0098
7 – – – 0.0017 0.0012 0.0011
8 – – – 0.0026 0.0019 0.0018

3 Band Mean 0.0283 0.0217 0.0217 0.0282 0.0216 0.0216
8 Band Mean – – – 0.0180 0.0136 0.0135
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Results II
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Video
Link: https://www.youtube.com/watch?v=NeMXPQw3CJU


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=NeMXPQw3CJU
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Extracting Pixel-wise Flow Vectors
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Flow Vectors

Flow vectors, F0←t and F1←t, learned from the interpolation model has the
following properties:

I Each F consists of u and v components representing horizontal and vertical
velocities

I Direction is extracted from u and v
I Locally smooth vector magnitude and direction
I Each pixel is 2km, temporal period is 15 minutes (u ∗ 2/15 ∗ 4 = km/hour

)
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Mesoscale - Hurricane Irma - September 8 2017
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CONUS - September 8 2017
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Band 1 - Visible - Blue
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Band 2 - Visible - Red
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Band 3 - Near-IR



27/34

Band 4 - Near-IR
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Band 5 - Near-IR
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Band 6 - Near-IR
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Band 7 - IR
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Band 8 - Near-IR - Upper-Level Tropospheric Water Vapor
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Conclusions
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Conclusions

1. Key Points
I Optical flows are numerically estimated with deep neural networks
I Flow vectors are used to track the movement of objects in images, such as

clouds
I The intermediate frame interpolation approach can estimate flow vectors for

any time in the domain
2. Next Steps

I How are the flow vectors related to wind? What exactly is being captured?
I Use ground truth data (Aeolus?) to understand the vectors
I Simplify optical flow model

3. Optical flow applied to nowcasting of geostationary data is another
promising direction.
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