

National Institute of Information and Communications Technology Working Group Meeting on Space-based Lidar Winds (February 7, 2018, NOAA David Skaggs Research Center, Boulder CO, US)

Recent activities of coherent Doppler Wind Lidar at NICT

<u>S. Ishii</u>^a, A. Sato^{b, a}, M. Aoki^a, K. Akahane^a, S. Nagano^a, K. Mizutani^a, H. Iwai^a, K. Okamoto^{c, a}, P. Baron^a, S. Ochiai^a, and M. Kubota^a

a. National Institute of Information and Communications Technology
b. Tohoku Institute of Technology
c. Japan Meteorological Agency / Meteorological Research Institute

Outline

- Background and Objective
- Concept of future space-based Doppler Wind Lidar
- · Development of high pulse-energy 2-µm laser
- Recent activities at NICT
- Summary

Background and Objective

- Background
 - Global wind profile observation is essential to NWP. Current space-based observing systems are unbalanced toward temperature- and water-vapor-related measurements in comparison with wind measurements.
 - Space-based Doppler wind lidar (DWL) is one of promising candidate to fill the gap
 - ESA is planning to launch the first space-based DWL Aeolus for global wind profile observations.
- Objectives of this study
 - Development of a reliable stable single-frequency 2-µm pulse laser for DWL
 - Demonstration of the 2-µm pulse laser meeting requirements for a future space-based coherent DWL

Concept of super-low-altitude-satellite-based DWL

	Super Low Altitude space-borne Coherent Doppler Wind Lidar		
Orbital altitude Orbit	220 km Polar orbit / Low-inclination orbit		
Transmitter	2-µm pulse laser (125 mJ, 30 H		
Receiver	Heterodyne detection 0.4 m (primary mirror) x 2		
Target horizontal resolution	<100 km		
Target vertical resolution	Altitude 0-3 km: <0.5 km Altitude 3-8 km: <1 km Altitude 8-20 km: <2 km		
Nadir angle	~35 degree		
Looking angle	45 and 135 degrees		
Target horizontal wind	-100~100 m/sec		

Super Low Altitude Test Satellite

- December 23, 2017: Launch
- Launch 3 month: Check
 - Descending: 643 km x 450 km => 392-km circular orbit
- 3 month -
- Descending: 392 km => 268 km circular orbit
- 15 month 21 month
 - Keep orbital altitude
 - ➤ Ion engine
 - > Descending: 392 km => 268 km circular orbit

Working Group Meeting on Space-base

 \triangleright

http://www.jaxa.jp/press/2017/10/files/20171027_h2af37_j.pdf

Collaboration framework for space-borne Doppler lidar

Development of single-frequency high pulse-energy 2-µm laser

Development of 2-µm semiconductor laser for single-frequency laser

- •Highly-stacked InAs quantum-dot layer for 2-µm laser
- •Demonstration at 2-µm
- Next step
 - High output power
 - Narrow linewidth

7 February 2018 Working Group Meeting on Space-based Lidar Winds

Development of electrical circuit for Laser cavity control

Updating of control circuit for Ramp and fire 10.0 0.55 Q-sw trigger (a.u.) 9.0 0.50 PZT signal 8.0 Ξ. 0.45 ಹ 7.0 0.40 detector 6.0 0.35 Q-sw trigger 5.0 0.30 4.0 0.25 esonance 3.0 0.20 PZt signal, 2.0 0.15 Output from resonant detector 1.0 0.10 0.0 0.05 Ž -1.00.00 -2.0-0.05 600 200 300 400 500 700 800 900 1000 0 100 Time from ending pump (usec) 2051.25230 σ = 0.000025 nm σ = 0.000015 nm Jitter : 100-200us Jitter : < 50us

Power < $\pm 3\%$

PZT control

10000

12000

8000

Power < $\pm 5\%$

No PZT control

4000

6000

Shot

2000

2051.25225

2051.25220

2051.25215

2051.25210

2051.25205

0

Wavelength (nm)

Time control for Q-switching for multi pulses

New 2-µm ring laser

Lasing characteristics of 2-µm ring laser

Tm: 1.0 %, Ho: 0.7 % => 50 mJ at 30 Hz

7 February 2018

Tm: 1.0 %, Ho: 0.4 %

Comparison of high pulse-energy 2-µm laser

FOM	L: 33mm Ho: 0.4% PRF: 30Hz OSC: 1.5J	L: 33mm Ho: 0.4% PRF: 50Hz OSC: 1.5J	L: 22mm Ho: 0.4% PRF: 30Hz OSC: 1.5J	L: 22mm Ho: 0.7% PRF: 30Hz OSC: 1.5J	L: 22mm Ho: 1.0% PRF: 30Hz OSC: 1.5J
Single pulse AMP: x1.5 Single pulse AMP 1.5倍 (1.5J) を仮定	× FOM: 0.087 (64mJ, 50cm)	⊖ FOM: 0.113 (64mJ, 50cm)	⊖ FOM: 0.110 (80mJ, 50cm)	© FOM: 0.116 (85mJ, 50cm)	× FOM: 0.085 (62mJ, 50cm)
	PWR: 240 W WP: 0.8%	PWR: 400 W WP: 0.8%	PWR: 240 W WP: 1.0%	PWR: 240 W WP: 1.1%	PWR: 240 W WP: 0.8%
Single pulse AMP: x2.0 Single pulse AMP 2.0倍 (2.0J) を仮定	× FOM: 0.104 (76mJ, 50cm)	⊖ FOM: 0.135 (76mJ, 50Hz, 50cm)	⊖ FOM: 0.129 (94mJ, 50cm)	⊖ FOM: 0.110 (100mJ, 50cm)	× FOM: 0.102 (75mJ, 50cm)
	PWR: 280 W WP: 0.8%	PWR: 467 W WP: 0.8%	PWR: 280 W WP: 1.0%	PWR: 280 W WP: 1.1%	PWR: 280 W WP: 0.8%

PWR: Power WP: Wall plugin Cf. Requirements FOM(Telescope diameter Φ 40cm, PRF 30Hz): 0.125J× $\sqrt{30}$ Hz×(0.4m)^2=0.110 FOM(Telescope diameter Φ 50cm, PRF 30Hz): 0.080 FOM(Telescope diameter Φ 50cm, PRF 30Hz): 0.062 J× $\sqrt{50}$ Hz×(0.5m)^2=0.110

Recent activities at NICT

Ground-based 2-µm Doppler Wind lidar

13/20

Airborne 2-µm coherent Lidar for wind and CO₂ measurement

Validation experiment for the Atmospheric Dynamic Mission-Aeolus

SHOKEN ISHII^{*}, HIRONORI IWAI^{*}, MAKOTO AOKI^{*}, PHILIPPE BARON^{*}, KOHEI MIZUTANI^{*}, SEIJI KAWAMURA^{*}, SATOSHI OCHIAI^{*}, ANDTOMOAKI NISHIZAWA^{**} ^{*} NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY ^{**} NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

Preparation for Aeolus CAL/VAL

NICT Tokyo (35.7N, 139.5E) ●Two 2-µm coherent Doppler wind lidars ●1.3 GHz wind profiler

VAD

Cols: CO-Is / Baron, Kawamura, Mizutani

NICT Kobe (34.7N, 135.0E) ●1.6-µm coherent Doppler wind lidar (WLS400S)

Head and controller for the scanner will be replaced in Kobe.

NICT Okinawa (26.5N, 127.8E) •1.6-µm coherent Doppler wind lidar (WLS400S) •GPS-sonde Send back to

Send back to FR in November 2017.

AD, Power supply, EDFA, and circulator were replaced.

Shipped to JA around at the end of this February.

Cols: CO-Is / Iwai, Yamamoto, Ishii

Schedule

	2017	JFM/2018	AMJ/201	8 JAS/2018	OBD/2018	
Preparation	<u>с</u>	heck schedule				
	\geq	DWL, WPR, GPS radiosonde chec	5- ck			
Lidar and Wind profiler radar observations	> 1.6-µm CDWL and WPR: 7 days and 24 hours operation					
	ML, MMRL, MMHL : 7 days and 24 hours operation					
			2- campo	um CDWL: aign operation		
			GPS- campo	-radiosonde: aign operation		
Data analysis				Statistical	comparison	
				Initio	l result	
					Summary	

Validation of the EarthCARE ATLID and MSI products using ground-based lidar and sunphotometry measurements in East Asia.

T. NISHIZAWA^{*1}, A. HIGURASHI^{*1}, R. KUDO^{*2}, H. IRIE^{*3}, K. YASUNAGA^{*4}, M. KATSUMATA^{*5}, K. YUMIMOTO^{*6}, S. ISHII^{*7}, H. OKAMOTO^{*6}, K. SATO^{*6}, S. KATAGIRI^{*6}, AND T. Y. NAKAJIMA^{*8} *¹NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES, JAPAN, *²METEOROLOGICAL RESEARCH INSTITUTE, JAPAN, *³CHIBA UNIVERSITY, JAPAN, *⁴UNIVERSITY OF TOYAMA, JAPAN, *⁵JAPAN AGENCY FOR MARINE–EARTH SCIENCE AND TECHNOLOGY, JAPAN, *⁶KYUSHU UNIVERSITY, JAPAN, *⁷NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY, JAPAN, *⁸TOKAI UNIVERSITY, JAPAN,

Validation of the EarthCARE ATLID and MSI products using ground-based lidar and sunphotometry measurements in East Asia.

Tomoaki Nishizawa^{*1}, Akiko Higurashi^{*1}, Rei Kudo^{*2}, Hitoshi Irie^{*3}, Kazuaki Yasunaga^{*4}, Masaki Katsumata^{*5}, Keiya Yumimoto^{*6}, Shoken Ishii^{*7}, Hajime Okamoto^{*6}, Kaori Sato^{*6}, Shuichiro Katagiri^{*6}, and Takashi Y. Nakajima^{*8}

*1National Institute for Environmental Studies, Japan, *2Meteorological Research Institute, Japan, *3Chiba University, Japan, *4University of Toyama, Japan, *5Japan Agency for Marine-Earth Science and Technology, Japan, *6Kyushu University, Japan, *7National Institute of Information and Communications Technology, Japan, *8Tokai University, Japan,

1. Objectives

The objective of the proposed study is <u>to validate the ATLID L1B, ATLID L2A, MSI L2A, and</u> <u>ATLID-MSI L2B products using ground-based lidar and sunphotometry data</u>, and to contribute to the performance evaluation of EarthCARE observations.

- Main target parameters being Mie co-polar, Rayleigh, and cross-polar attenuated backscatter coefficients at 355 nm (ATLID L1B)
- 10 km-scale aerosol-oriented 355 nm extinction, backscatter, and depolarization profiles (A-AER/ATLID L2A)
- 355 nm cloud and aerosol extinction, backscatter, and depolarization profiles (A-EBD/ATLID L2A)
- aerosol layer products (A-ALD/ATLID L2A)
- aerosol optical thicknesses (AOTs) at 670 and 865 nm (M-AOT/MSI-L2A)
- columnar aerosol optical properties (AM-ACD/ATLID-MSI L2B).

7 February 2018 Working Group Meeting on Space-based Lidar Winds

Summary

Recent research and activities of 2- μm coherent Lidar at NICT are reported in the presentation:

- Development of a single-frequency 2-µm high pulse-energy laser meeting the requirements for the space-based CDWL
- Development of single-frequency semiconductor laser (on going)
- Q-switched output pulse energy of 125 mJ operating at 30 Hz at a laser rod temperature of -40C
- Preliminary results of airborne 2-µm coherent lidar
- Preparation for CAL/VAL activities for ESA missions: Aeolus and EarhCARE (on going)

Future works:

- Development of single-frequency semiconductor laser
- Demonstration of a single-frequency semiconductor laser with optical fiber amplifier
- Optimization of performance of a new 2-µm ring laser
- Environment test

Back up

NIES aerosol profiling

Dual-wavelength polarization Mie lidar (ML) $(2\beta(532,1064)+1\delta(532))$

*24-hour continuous operation

• Multi-wavelength Mie-Raman lidar (MMRL) ($2\alpha(355,532) + 3\beta(355,532,1064) + 2\delta(355,532)$)

*24-hour continuous operation

• Multi-wavelength Mie-HSRL ($2\alpha(355,532) + 3\beta(355,532,1064)+2\delta(355,532)$)

*24-hour continuous operation except for 355 HSRL

7 February 2018

Lasing characteristics of 2-µm ring laser: double pulse

OSC

Tm-doped fiber amplifier for single-frequency 2-µm CW laser

- Requirement for optical output power
 - Wavelength: 2051 nm
 - ➢ Gaing: 13 dB (input optical power:~1mW)
 - ➢ Output:20 mW
- Other requirements
 - Long-term mechanical stability
 - (vibration and shocks)
 - ➢ Maintenance-free
 - Compact and high efficiency
 - (E-O conversion, removal heat)
 - ➢ Space-qualification

Thulium-Doped Fiber for space application

- Double-clad Tm optical fiber
- 793nm multi-mode LD pumping
- All optical fiber

7 February 2018

Working Group Meeting on Spa

2-µm laser technology required for space-based CDWL

Target pulse energy: 125 mJ x 30 Hz

