The Essential Practices of Lidar Wind Data Assimilation for high-impact weather forecasting

Zhaoxia Pu

Department of Atmospheric Sciences, University of Utah Robert Atlas

NOAA Atlantic Oceanographic and Meteorological Laboratory

David Emmitt

Simpson Weather Associates, Inc.

Bruce Gentry

NASA Goddard Space Flight Center

Working Group on Space-based Lidar Winds February 7-8, 2018 Boulder, CO

Outline

- Uncertainties of wind analyses and their implications
- The impact of lidar wind data assimilation on high-impact weather forecasting
 - Real data assimilation (Ground-based and airborne Lidar winds)
 - Observing System Simulation Experiments (OSSEs)
 - **3-D Lidar wind vs. ocean surface winds**
 - ➢ 3DVAR vs. 4DVAR
 - 3dEnVar vs. 4dEnVar

• Comments on future missions

Pu, Z., L. Zhang, S. Zhang, B. Gentry, D. Emmitt, B. Demoz, R. Atlas, 2017: The impact of Doppler wind lidar measurements on high-impact weather forecasting: Regional OSSE and data assimilation studies. Book Chapter, "Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)", Ed. By S. K. Park and L. Xu, Springer, pp.259-283. DOI 10.1007/978-3-319-43415-5_12.

The uncertainties of global wind analysis NCEP/NCAR Reanalysis vs. ERA-40, 1980-1999

Pu et al. - Wind Lidar WG 2018

Uncertainties in global wind analysis NCEP/NCAR Reanalysis vs. ERA-40, (1980-1999)

Seasonal variability of meridianally averaged v, DJF(winter) vs. JJA(summer)

• There is difference in terms of the seasonal wind variability represented by two reanalysis products (at least in the magnitude of the variability)

• It is important that the future DWL data could be helpful to accurately present the seasonal wind variability.

Variation of monthly mean wind speed with height over the East Coast areas of US (65W-85W, 25N-50N) from ECMWF reanalysis (1980-1999)

Future Doppler Lidar Wind should be good enough to detect monthly and seasonal variations of the wind profiles in details

Characteristics of Low-Level Jets over US SGP HY 06 and 07

Data	Pressure	Speed	Lat	Lon	Direction	Time	Count
NARR	874.8	22.7	36.9	-98.6	206	10 z	285
MERRA2	879.0	23.8	36.0	-99.6	196	10 z	308

Airborne DWL profiles, collected during TPARC/TCS-08 from ONR P-3

Case

Typhoon Nuri over the Western Pacific

• Wind profiles with 50 m vertical and 1 km horizontal resolution

Time period of data

2330UTC 16 August to 0200UTC 17 August 2008 (about 3-h)

Pu et al. - Wind Lidar WG 2018

Typhoon Nuri

DWL vs. Dropsonde: Sample profiles

Pu et al. - Wind Lidar WG 2018

Impact study: Data Assimilation Experiments

WRF-ARW model: Two-level nested grids (27 km and 9km)

 Experiments: "No Data" -- guess field (6 h WRF forecast) CTRL -- 3DVAR assimilation of conventional and dropsonde data
3DVAR - 3DVAR assimilation of DWL profiles
4DVAR - 4DVAR assimilation of DWL profiles

Divergence + Wind "No Data"

Divergence + analysis increment of wind -- "CTRL"

Divergence + analysis increment of wind --"3DVAR"

Use of DWL data enhanced the low level convergence of Nuri in the simulation

DWL data has positive impact on numerical simulation of Typhoon Nuri

Compared with 3DVAR, 4DVAR is deemed to be more promising for assimilating airborne DWL data.

Pu et al. 2009, GRL

Ground-based Lidar Winds GLOW (Goddard Lidar Observatory for Winds) Lidar Wind Observations

International H₂ O Program (IHOP) field program: May and June 2002

Wind profile Resolution: 10 minutes; 100m below 3km and 200m above 3km of the height over 240 h of data in 35 days

Observations at Homestead site, OK during 12-13 June 2002

Quality of the Lidar wind data

Wind speed: Lidar vs. Sonde

June 12 2002 Convection Case

Visible satellite imagery at 2045 UTC 12 Jun 2002, with surface observations overlaid.

GLOW wind profiles from 1800 UTC to 2100 UTC June 2002

Composite radar reflectivity observations

2100 UTC 12 June 2002

2300 UTC 12 June 2002

0300 UTC 13 June 2002

0100 UTC 13 June 2002

CTRL (Left) Vs. 4DVAR (right): Simulated Radar Reflectivity

2100 UTC 12 June

2300 UTC 12 June

0100 UTC 13 June

0300 UTC 13 June

Pu et al. - Wind Lidar WG 2018

Quantitative Precipitation Forecasting Scores

Ratio of equitable threat scores (ETS) 4DVAR vs. CTRL

Zhang and Pu 2011, MWR

General concept of OSSEs

OBSERVING SYSTEMS SIMULATIONS

R. Atlas (1985)

Regional OSSEs

Pu et al. 2017

Pu et al. - Wind Lidar WG 2018

Exp. I: First Snapshots of the Satellite-based DWL Observations

3rd generation DWL configure (Dr. G. D. Emmitt)

70 W

80

60 W

50 W

40 W

30 W

20 W

Case 1: No cloud impact

Pu et al. - Wind Lidar WG 2018

Impact of Satellite-based DWL Observations

A regional OSSE study

Impacts from assimilation of "DWL" profiles

(48-h FCST)

Zhang and Pu (2010) *Adv. Meteor.*

Vertical resolution: 250m below 2km; 1 km above 2km

Data impact: Track and track errors

P_{min} and **V**_{max} Errors

Pu et al. - Wind Lidar WG 2018

Accumulated 3-h rainfall forecasts at 1200 UTC 19 Aug.

Pu et al. - Wind Lidar WG 2018

3-D Lidar winds vs. CYGNSS ocean surface winds

A Hurricane during 1200 UTC 28 July to 1200 UTC 11 August Nolan et al. 2013

Pu et al. - Wind Lidar WG 2018

Track

Pu et al. - Wind Lidar WG 2018

Nature Run

CYGNSS

CTRL

3D wind

Concluding remarks

- There are significant uncertainties in global and regional wind analyses, implying the insufficient wind measurements
- Both Ground-based and airborne Doppler wind lidar measurements are valuable for high-impact weather forecasting. They should be actively used in the future field campaigns and operational missions
- Space-based 3-D wind profiling measurements are essential for improving high-impact weather events.

Thank you very much for your attention!

Zhaoxia.Pu@utah.edu