

Aeolus CAL/VAL preparation status February 2018

<u>A.G. Straume¹</u>, T. Fehr¹, T. Kanitz¹, F. de Bruin¹, J. von Bismarck², F. Buscaglione², W. Lengert², Aeolus Mission Advisory Group

¹ESA-ESTEC, The Netherlands ²ESA-ESRIN, Italy

http://www.esa.int/Our_Activities/Observing_the_Earth/Aeolus

The Aeolus Mission Advisory Group

Members:

- Angela Benedetti / ECMWF
- Alain Dabas / MétéoFrance
- Pierre Flamant / IPSL
- Mary Forsythe / MetOffice
- Erland Källén / MISU (Chair)
- Heiner Körnich / SMHI
- Harald Schyberg / met.no
- Ad Stoffelen / KNMI
- Oliver Reitebuch / DLR
- Michael Vaughan / Lidar & Optics Associates

Observers:

Régis Borde (EUMETSAT), Mike Hardesty (NOAA/University of Colorado), Ramesh Kakar (NASA), Lars Peter Riishojgaard (WMO)

- 1. Aeolus sampling and products
- 2. Aeolus in orbit satellite, instrument and product verification and validation in phase E
- 3. Aeolus CAL/VAL requirements and organization
- 4. Aeolus CAL/VAL teams: status, coverage, gaps
- 5. Aeolus CAL/VAL schedule
- 6. ESA supported campaigns

Aeolus DWL sampling, molecular and particle backscatter at 355 nm (HSRL)

Rennie (ECMWF)

European Space Agency

Simulated Aeolus L2A observations Y. Benounna *et al.* MétéoFrance

Simulated backscatter and extinction observations (87 km horizontal averages) from ½ orbit CALIPSO data, 1/1/2007

Simulated backscatter coefficient profiles for observations (87 km horizontal average) at (a) ~5000 km and (b) ~15000 km in the figure above

Aeolus data products

- 1. Level 1B:
 - a. preliminary HLOS winds, not p and T corrected and not scene classified
 - b. Input to Level 2B processor (no direct scientific use in its own)
- 2. Level 2B:
 - a. horizontally projected line-of-sight wind (NRT)
 - b. PBL: 2 m/s, FT: 2-3 m/s, Stratosphere: 3-5 m/s
 - c. NRT, ESA EE format, perhaps also in BUFR (BUFR convertor available)
- 3. Level 2C:
 - a. assimilated winds from ECMWF model at location of Aeolus Level 2B observations
- 4. Level 2A:
 - a. atmospheric backscatter and extinction coefficient profiles (NRT)
 - b. no polarization measurements
 - c. Paralell polar backscatter of circularly polarized emitted light

Courtesy N. Žagar

Aeolus data products

- 1. Level 1B:
 - a. preliminary HLOS winds, not p and T corrected and not scene classified
 - b. Input to Level 2B processor (no direct scientific use in its own)
- 2. Level 2B:
 - a. horizontally projected line-of-sight wind (NRT)
 - b. PBL: 2 m/s, FT: 2-3 m/s, Stratosphere: 3-5 m/s
 - c. NRT, ESA EE format, perhaps also in BUFR (BUFR convertor available)
- 3. Level 2C:
 - a. assimilated winds from ECMWF model at location of Aeolus Level 2B observations
- 4. Level 2A:

L1B, L2A and L2B data are available NRT from ESA L2B data will be made available in BUFR format on the GTS and EUMETCAST by ECMWF and EUMETSAT

Dusk/dawn orbit

Courtesy N. Žagar

ESA study Invitations to Tender being launched soon

- 1. Small feasibility studies to look into new Aeolus spin-off products and applications
 - a. Ocean and earth surface backscatter
 - b. Atmospheric backscatter
 - **C**. ...

- 2. Larger study for extraction of aerosol information from the Aeolus L2A optical properties product
 - a. Possibly in synergy with other observations and/or models

Aeolus Data Dissemination Portal

	C ee	sa	Online	Disseminatio	'n	6	Eu	ropean Space	Agency
	ESA Earthnet							Welco	me Gues
								Collections	Logir
l	Directory T	ree View	- L2B_	Products	5				
	L2B_Products								Info
l	Collection	L2B_Products	;						
l	Baseline	2B03							
	Year-Month	2007-10							
l	<u>Day</u>	30							
l	Available products	:							
	AE_OPER_ALD	U_N_2B_200710	030T033729 _.	_20071030T05094	1_0002				
		<u>EO-SIP</u> E	O Product	Browse Image	Metadata				
	AE_OPER_ALD	U_N_2B_200710	030T155029 _.	_20071030T17234	11_0002				

http://aeolusds.eo.esa.int/oads/access/

- Open to experts and CAL/VAL PIs in commissioning phase and first months of phase E2
- Opened to general public via single sign-on as soon as data product is confirmed to be of good quality
 - no restrictions other than registration

In-orbit instrument and product verification and validation

- 1. Satellite and Instrument verification by industry (Comm. Phase, 3 months)
- 2. Verification of ESA data processing and operation by (CP and beyond)
 - a. Flight Operation teams
 - b. Payload Data Ground Segment teams
 - c. Algorithm core team with L1 and L2 data processing experts at DLR, MétéoFrance, KNMI and ECMWF
 - d. L2 processing centre at ECMWF including NWP monitoring
- 3. Product verification with international CAL/VAL teams (from L+ 2 months)
 - a. Collocated observations
 - b. Modelling
 - c. Science

ADM-Aeolus Observational Requirements Winds only!

		PBL	Troposphere	Stratosphere		
Vertical domain	[km]	0-2	2-16	16-20 (30)*		
Vertical resolution	[km]	0.5	1.0	2.0		
Horizontal domain		Global				
Number of profiles	[hour ⁻¹]	>100				
Horizontal track data availability		> 95%				
Temporal sampling	[hour]	12				
Horizontal resolution / integration	[km]	15 (goal) – 100 (threshold)				
Horizontal sub-sample length	[km]	3 km				
Random error (HLOS Component)	[m/s]		2.5	3 (3-5)**		
Systematic error (HLOS component)	[m/s]	0.7	0.7	0.7		
Dynamic Range, HLOS	[m/s]	±100 (150)*				
Error Correlation over 100 km		< 0.1				
Probability of Gross Error	[%]	< 5				
Timeliness	[hour]	3				
Length of Observation Dataset	[yr]	3				

Aeolus Scientific CAL/VAL Requirements document

- 1. Describes mission and mission objectives
- Product CAL/VAL requirements to be addressed by ESA and science teams
- **3**. Goal: Assure verification of Mission Requirements (L2)
- 4. Recommendations for CAL/VAL techniques to be applied
- 5. Guideline for CAL/VAL proposal review process
- 6. Guideline for CAL/VAL Implementation Plan

Aeolus CAL/VAL Implementation Plan document

- 1. Describes mission, mission objectives
- 2. Describes the products, requirements, information content
- 3. Lists CAL/VAL requirements from requirements document
- 4. Describes relevant ESA and industry activities (e.g. algorithm core team, campaigns, industry commissioning activities, ...)
- 5. Lists CAL/VAL proposals
- 6. Map ESA, industry and CAL/VAL proposal activities to requirements
- 7. Gap analysis
- 8. Describes the CAL/VAL coordination and planning
- 9. Describes data access, ESA tools, team communication, ...
- 10. Links to other missions

Aeolus CAL/VAL Rehearsal Workshop 2017

- 1. MétéoFrance, 28-30 March 2017, Toulouse, France
- 2. 100 participants CAL/VAL PIs, industry, national entities and ESA
 - a. Wind and aerosol in-situ, remote sensing, modelling groups
 - b. Met services, universities, national space agencies ... in Europe, US and Canada, China, Japan
- 3. Rehearsal: Simulated products made available for download and testing of reading tools

CAL/VAL proposal status July 2017

Proposal			CAL/VAL				
ID .	PI name and institute location	Products	techniques	Pre-Launch	Phase 1	Phase E2	Remarks
5156	Dabas, Alain, FR	W, A	RO, AC, GC				
5166	Apituley Arnoud, NL	W, A, C	GC				
5177	Hardesty Robert Michael, USA	W, A, C	RO, AC, GC, M, S				
5188	Apituley Arnoud, NL	W, A, C	RO, GC				
5190	Stoffelen Ad, NL	W, AL2	М				
5192	Schyberg Harald, NO	W, A, C	RO <i>,</i> M				
26989	Gausa Michael, NO	W, A, C	AC, GC				
27329	Reitebuch Oliver, DE	W, A	AC, GC				
27389	Stebel Kerstin, NO	W, A	RO, GC, S				
27409	Amiridis Vassilis, GR	Α, C	RO <i>,</i> GC				
27411	Wu Songhua, CHI	W, A, C	GC				
27449	Zagar Nedjeljka, SLO	W	М				
27529	Forsythe Mary, UK	W, A	AC, M, S				
27589	Ishii Shoken, JA	W	GC				
27590	Joe Paul, CA	W, A, C	RO, GC, M, S				
28295	Kushner Paul, CA	W	M, S				

W = Wind A = Aerosol C = Clouds

- RO = Routine Operations AC = Airborne Campaigns GC = Ground Based Campaigns M = Model Studies S – Other satellite obs
- AL2 Alternative L2 products

New CAL/VAL proposals expected from

- 1. Ground-based Doppler wind lidar (Xuejin *et al.*, Nanjing, China)
- 2. Ground-based Doppler wind and backscatter lidars (Fochesatto *et al.*, Fairbanks, Alaska (application to NSF on-going))
- 3. Ground-based aerosol lidars (Khalesifrad *et al.*, Iran)
- 4. Ground-based aerosol lidars (Müller et al., Korea and UK)
- 5. LALINET aerosol lidars (Landulfo et al., Latin America)
- Comparison of Aeolus extinction product with OSIRIS in the UTLS (Bourassa *et al.*, University of Saskatchewan, Canada)
- 7. Validation of Aeolus with ground-based wind profilers in Kiruna Sweden and India (Körnich *et al.*)
- 8. Discussions with BOM and CSIRO on possible CAL/VAL with Doppler wind radars and aerosol remote sensing instruments in Australia

Geographical coverage CAL/VAL proposals

- Data calibration and validation will be performed by teams world wide using:
 - Correlative ground-based (remote sensing) wind and aerosol observations
 - Airborne
 observations
 - Comparison to models
- Gaps:
 - Tropics and SH

Aeolus science and CAL/VAL schedule

- 1. Re-opening of Aeolus CAL/VAL portal: 1 March 2018
- 2. Cal/Val Team organization and preparations: Spring 2018
- 3. Workshop EUMETSAT 29 May: data assimilation European NWP community
- 4. 1st European Lidar Conference: 3-5 July 2018
- 5. Communication on mission status, instrument performance and CAL/VAL coordination via email and Aeolus wiki page:
 - From [Launch 3 months] onwards
- 6. Mission launch: expected September 2018
- 7. Algorithm core team support to industry commissioning:
 - September December 2018
- 8. First CAL/VAL activities: L+2 months on-wards
- 9. First post-launch Aeolus CAL/VAL and Science Workshop:
 - March 2019, ESA-ESTEC
 - Yearly workshops (Mission lifetime: 3 years)

10.Campaigns: next slide

Working group on space-based Lidar winds | 08/02/2018 |

Phase E2 Airborne Campaigns – Options T. Fehr (Aeolus campaigns manager)

- 1. Aeolus CAL/VAL preparations are picking up speed
- 2. Most CAL/VAL teams have secured funding for CAL/VAL activities, although some gaps remain (e.g. PhD student funding)
- 3. ESA will launch on-line lecture series on:
 - a. The instrument, calibration, data processing, product monitoring and validation
 - Training of new people joining CAL/VAL teams soon
 - b. Aeolus science applications
- 4. Aeolus CAL/VAL Announcement of Opportunity website reopens 1 March
- 1st post-launch Aeolus science and CAL/VAL workshop at ESA-ESTEC, March 2019

Working group on space-based Lidar winds | 08/02/2018 |

http://www.esa.int/Our_Activities/Observing_the_Earth/Aeolus

https://aeolusweb.wordpress.com/

