

Preparing DAWN for Future Airborne Campaigns

John Marketon

Michael Kavaya, Jirong Yu, Songsheng Chen, Larry Petway, Upendra Singh

NASA Langley Research Center, Hampton, Virginia 23681

Working Group on Space-Based Lidar Winds Boulder, CO

7-8 Feb 2018

DAWN Team

Langley Bruce Barnes Songsheng Chen Connor Huffine Michael Kavaya Zhaoyan Liu John Marketon Anna Noe Larry Petway Diego Pierrottet Ruben Remus Aboubakar Traore Jirong Yu

Simpson Weather Associates

David Emmitt Steve Greco Sid Wood

Beyond Photonics

Charley Hale Sammy Henderson

PRE-CPEX IMPROVEMENTS

Pre-CPEX Improvements (FY16-17)

Mechanical modifications for improved accessibility

- Limited access pressure vessel not needed on DC-8
- Access ports cut into enclosure, covers & alignment jig fabricated
- Internal obstructions removed
- Assembly stresses impacting optical subsystem alignment reduced/eliminated

Pre-CPEX Improvements (FY16-17)

Optical repairs & improvements (with Beyond Photonics)

- Malfunctioning fiber network repaired
- T/R beam size, curvature, & alignment corrected

 \geq 10 - 15 dB improvement (Polar Winds 2015 \rightarrow CPEX 2017)

DAWN CPEX Performance

DAWN operated at ~99% availability during CPEX

~1% unavailability caused by:

High cargo bay temps at start of flight

Condensation/hydraulic fluid on port window during flight

Full column profiles when focus adjusted after flight 6 of 16

POST-CPEX IMPROVEMENTS

Simplify Operations & Maintenance

Replacement transceiver bench

- Expanding thermal operating window to ease alignment
- Improving reliability & robustness
- Stiffer bench with improved thermal paths
- Flexure-based bench to structure mounting

> <u>Not</u> cannibalizing existing transceiver/laser

- Purchasing new laser components *and* spares wherever possible
- Refurbishing non-replaceable laser components

Electronics Obsolescence Mitigation

Electronics at or beyond end-of-life

- Intermittent problems before CPEX DC-8 upload
- All electronics ca. 2009 or older, with few spares on hand
- COTS electronics no longer manufactured or supported
- Custom circuits
 - Critical components are no longer manufactured
 - Obsolete development tools (FPGA, LabWindows, etc)

Replace or refurbish electronics

- Aim to replace and modernize all system electronics (funding dependent)
- Refurbish components as cost control measure (laser diode drivers)
- Procure sufficient critical spares for >10 year operational lifetime

Updating Computers

> Obsolete control & acquisition hardware

- Industrial-grade 8U CPCI computers (ca. 2007) running WinXP
 - Intel Core Mobile processor
 - 8-processor SHARC DSP for FFTs
 - Acqiris 10-bit, 1.5 GSPS digitizer (~6.5 ENOB)

Replacement hardware

- Military-grade 2U PCIe computers running CentOS Linux
 - Intel Xeon E3 processor
 - SignaTec 8-bit, 3 GSPS digitizer (7.5 ENOB) w/Xilinx Virtex 5 FPGA

Data Acquisition and Processing System (DAPS) Software

DAPS tightly coupled to WinXP & specific hardware Update needed

DAPS Update Phase A: Move old DAPS to new hardware

- Shift FFT code from SHARC DSP to CPU
- Replace Acqiris digitizer code with SignaTec digitizer code
- Validating DAPS in virtualized WinXP under Linux

> DAPS Update Phase B: Complete DAPS rewrite

- CentOS 7 with realtime kernel
- Modular software framework: Core Flight System (cFS)
- Hardware abstraction decouples SW from specific HW
- Provide improved QuickLook & realtime algorithms & features

Telescope Focus Remote Control

Replace manual micrometer with motorized actuator Enables focus adjustment to flight conditions

Summary

> FY18 efforts focusing on:

Simplifying operations & maintenance Improving reliability & robustness Updating hardware and software

DAWN remains ready to fly