The Impact of Stratospheric Ozone Hole Recovery on Antarctic Climate

Judith Perlwitz (1,2), Steven Pawson (3), Ryan Fogt (2), Eric Nielsen (4), William Neff (2),
(1) CIRES-Climate Diagnostic Center, University of Colorado, Boulder, CO; (2) NOAA-ESRL Physical Sciences Division, Boulder, CO; (3) NASA Goddard Space Flight Center, Greenbelt, MD; (4) Science Systems and Application, INC, Landham, MD

Introduction

• Model experiments have revealed that both stratospheric polar ozone depletion and anthropogenic increase of greenhouse gases (GHG) have contributed to the observed increase of summertime tropospheric westerlies in the Southern Hemisphere (SH), but with ozone influence dominating.
• As the stratospheric halogen loading decreases in the future, ozone is expected to return to higher values, with the disappearance of the Antarctic ozone hole. The relative contributions of ozone hole recovery and GHG increases on the SH circulation changes during the 21st century (C21) are not well quantified.
• We estimate the impact of ozone recovery on SH polar climate using the coupled chemistry climate model GEOS-CCM.
• We will contrast the impacts of polar ozone depletion in the 20th century and recovery in the 21st century on the circulation, and relate the results to those from IPCC AR4 C21 simulations.

Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Time Period</th>
<th>SST</th>
<th>Halogen</th>
<th>Greenhouse Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-1</td>
<td>1996-2006</td>
<td>Had1SST</td>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>C2-2</td>
<td>1996-2006</td>
<td>Had1SST</td>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>C2(1960)</td>
<td>1960-2006</td>
<td>Had1SST</td>
<td>Chlorine fixed at 1960 values</td>
<td>Observed with chlorine fixed at 1960 values</td>
</tr>
<tr>
<td>C21-1</td>
<td>1996-2006</td>
<td>Had1SST</td>
<td>IPCC/GHG scenario A1B (medium)</td>
<td>Observed with chlorine fixed at 1960 values</td>
</tr>
<tr>
<td>C21-2</td>
<td>2000-2006</td>
<td>CCSM3.0</td>
<td>IPCC/GHG scenario A1B (medium)</td>
<td>Observed with chlorine fixed at 1960 values</td>
</tr>
<tr>
<td>C21-1960</td>
<td>1960-1996</td>
<td>CCSM3.0</td>
<td>chlorine fixed at 1960 values</td>
<td>Observed with chlorine fixed at 1960 values</td>
</tr>
</tbody>
</table>

Comparison with AR4 Models

21st Century Changes

2094 minus 2006

3-Month Overlapping SAM Index

With Chlorine Change

No Chlorine Change

Summary and Conclusions

• In the GEOS CCM, ozone hole causes substantial seasonal circulation changes in accord with prior observations and model based studies
• This signal diminishes as ozone recovers through the 21st Century, even as GHGs continue to increase.
• Ozone change signals swamp the impact of GHG increases in the 1970-2100 period
• AR4 ensembles suggest this same impact can be captured in climate models (with no stratosphere and imposed ozone change), though damped
• Need to test this in a fully coupled ocean-atmosphere-chemistry model.

More Information:


judith.perlwitz@noaa.gov

70-hPa Minimum Zonal Mean Ozone over Southern Hemisphere Polar Cap Area (90°S-60°S)