PLANS FOR CLOUD AND BOUNDARY-LAYER RESEARCH DURING THE ARCTIC SUMMER CLOUD-OCEAN STUDY

P. O. G. Persson^{1,2}, M. Shupe^{1,2}, M. Tjernström³, A. Gasiewski⁴, I. Brooks⁵, B. Brooks⁵, T. Uttal² and C. Fairall²

¹Cooperative Institute for Research in Environmental Sciences/NOAA/ETL, Boulder, CO, USA ²NOAA/Earth System Research Laboratory/Physical Science Division, Boulder, CO, USA ³Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden ⁴Center for Environmental Technology/U. of CO, Boulder, CO, USA

⁵Institute for Atmospheric Science, University of Leeds, Leeds, U. K.

Dual Component

- L Deployment of surface-based sensors near North Pole with R/V Oden, Aug 1- Sep 12, 2008 (ASCOS) High-temporal resolution point measurements of
- A. Cloud properties and processes
- B. Boundary-layer structure, properties, and processes
- C. Surface energy budget
- D. Boundary-layer aerosol properties and sources

II. Six airborne missions using NASA DC-8 research aircraft based in Kiruna, Sweden (AMISA) Spatial measurements focused on

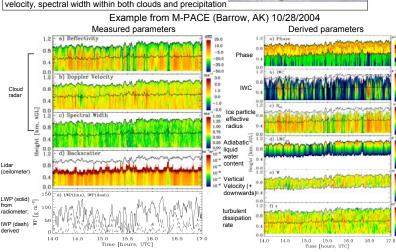
- A. Synoptic/mesoscale structure of clouds, dynamics parameters, and surface features
- B. Testing and validation of satellite retrieval techniques
- C. In-situ sampling of cloud microphysics, aerosol species, and size distributions

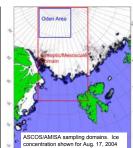
Science Objectives of Surface-based Measurements

1) Determine atmospheric processes controlling boundary layer clouds north of 80°N. 2) Temporally and spatially link cloud properties to the evolution and distribution of boundarylayer wind, thermodynamic structure, aerosols, and surface energy budget 3) Compare pack-ice cloud macro- and microphysical properties to those similarly derived over the pack ice during SHEBA and at Arctic Ocean coastal sites (e.g., SEARCH) 4) Determine evolution of boundary-layer cloud condensation (CCN) and ice forming nuclei (IFN)

5) Determine role of boundary-layer turbulence and surface properties for the exchange of heat, water, momentum and aerosols between the troposphere and the ocean/ice/air interface 6) Determine role of marine biochemical processes for CCN and IFN formation, with emphasis on the open-lead surface microlayer

7) Provide comprehensive data set on the high Arctic climate system as short-term "mirror" data to that from long-term Arctic coastal sites for developing and testing integrated climate models

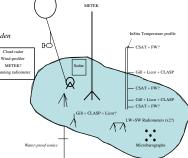

Cloud Measurements


- Instrumentation:

- 3) ceilometer
- 4) enhanced S-band Doppler cloud and precipitation radar

Measurement Parameters:

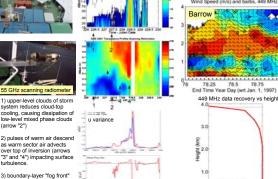
cloud macro- /microphysical properties, reflectivity, vertical velocity, spectral width within both clouds and precipitation

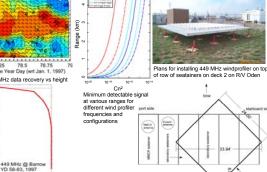


Oden

Boundary-Layer and Surface Measurements Instrumentation

- 1) 5-mm scanning radiometer temperature profiles (0-1 km; 1 s -10 min)
- 2) 449 MHz wind profiler hourly profiles of wind speed/direction. turbulence intensity (0.2 5 km, 100 m)
- 3) **4X daily rawinsondes** profiles of basic state parameters
- 4) on-ice flux towers (15m, 30m) SL profiles of turbulent fluxes of momentum and sensible/latent heat
- 5) broadband radiometers 4 component radiative fluxes
- 6) tethered balloon basic state parameters, turbulence, aerosol sampling
- 7) Scintec phased array sodar backscatter, 3D mean winds, CT², z/L, turbulent dissipation, 10 m resolution, 10-min averaging


Example from AOE-2001

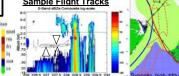

S-band Cloud &

arrow "2")

Unique use of 449 MHz wind profiler

- though developed for Arctic deployment (SHEBA), a 449 MHz wind profiler has never previously been deployed in the Arctic in a scientific field program
- 449 MHz frequency gives large sensitivity advantages in dry Arctic environment
- 449 MHz wind profiler has never been deployed on ship before because of size and ship motion Wind Speed (m/s) and barbs, 449 MHz

449 MHz windprofile


Airborne Measurements (AMISA; NASA DC-8) AMISA DC-8 Instrumontation Science Objectives

1) in-situ validation for ship, aircraft, satellite data

2) determine processes linking cloud radiative/microphysical properties to synoptic/mesoscale disturbances, boundary-layer structure, and surface energy budgets near freezeup 3) determine type and size distribution of aerosols in/near highlatitude, low-level clouds and thermal inversion 4) aircraft/satellite sea-ice imaging/mapping and atmospheric radiometric profiling

5) validate/improve NASA Agua AMSR-E sea-ice concentration algorithm under fall transition conditions 6) evaluate C-/L-band for lead/meltpond discrimination

Sample Flight Tracks

Mesoscale/mid-altitude track

1) high-level passes (10 km) on way to Oden (black dot) and mid-level (1 km) in vicinity of Oden use dropsondes (D) and remote sensors for mapping and profiling

Obtain

near Oden 2) integrated water & CLW - nseudo profile with up/down & sfc DCR

3) radiative flux divergence of low-level cloud top

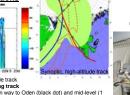
(DC-8)	AWISA DC-6 Instrumentation			
	Instrument	Description	Observables	
ivsical	Polarimetric Scanning Radiometer (PSR)	Multiband polarimteric radiometric imaging system; Airborne AMSR-E equivalent	high resolution sea ice mapping; cloud cover; integrated water vapor	
ary-layer	Dual-channel radiometer (DCR)	21/31 GHz, up/downlooking	integrated water vapor & cloud liquid water above/below aircraft	
ear high-	Scanning Low Frequency Microwave Radiometer (SLFMR)	L-band salinity mapping	L-band brightness; mapped salinity with ~5 ppt precision for lead/meltpond discrimination	
spheric	Cloud, aerosol, and precipitation spectrometer (CAPS)	From Droplet Measurements Technology	Cloud droplet and ice particle spectra, liquid water content, droplet/ice discrimination	
	Expendable digital dropsondes	Yankee Technology	Sub-aircraft profiles of temperature, pressure, humidity, and wind	
	OAT Rosemount probe	Outside air temperature adjusted for Mach number	Air temperature	
l i	Solar flux pyranometers (SFPs)	Hemispheric integrating thermopile irradiance sensors	Up- and downwelling shortwave fluxes	
	Volatile Aerosol Concentration and Composition (VACC)	University of Leeds' system	Aerosol number concentration spectra and aerosol composition	
Aerosol sampling: Leeds airborne VACC Remote Sensors: U of CC				

MetOne Condensation Particle Counter

R > 3nm; Data rate 10 Hz

about the sampled aerosol

(CPC)


(SMPS)

Volatility System

mixing state

Remote Sensors: U of CO PSR mounted on aircraft

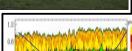


Synoptic/mesoscale sampling track

1) synoptic thermodynamic/kinematic structure of environment upwind and

as warm sector air advects over top of inversion (arrows "3" and "4") impacting surface 3) boundary-layer "fog front" between arrows "1" and "2" frequently seen in Arctic BL

ensible heat flux


20 40 60 80 Rel From 60 80

Low-level track & liquid cloud penetration ow-altitude transect & liquid cloud penetration Ohtain

) particle size distributions of liquid drops/cloud ice, CLW -CAPS integrated water & CLW - pseudo profile with

up/down & sfc DCR) sub-cloud broadband radiative flux divergence

4) detailed mapping of surface meltoonds/leads

Ka-band radar and mi

1) Ka-band ($\lambda = 8$ mm) Doppler cloud radar 2) dual-channel (24/31 GHz) microwave radiometer