Motivation

Assimilation of precipitation estimates into numerical models requires information on the

error characteristics of the observations which include:

Measurement Error: Uncertainties in directly measured and derived quantities.
Representativeness Error: Variability of observed or derived quantities in space & time.

This study estimates the Measurement Error of raindrop size distributions (DSDs)
retrieved from vertically pointing Doppler radars by retrieving the DSDs from different
numerical models and analyzing the DSD statistics relative to the ensemble mean.
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DSD Model Inputs

All of the DSD retrieval models use the same inputs from two profilers
operating at 920-MHz and 50-MHz. The profilers provide the following
observations:

* Vertical air motion (50-MHz profiler)

* Spectral Broadening (50-MHz profiler)

* Radar Doppler velocity spectrum (920-MHz profiler)
Examples of these observations are shown below.
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Statistics Relative to the Ensemble Mean

The mean mass-weighted diameter, D,,, and the rain rate, R, are estimated for

each DSD model and the ensemble mean is estimated for each resolution volume

(each profile (45 second) and range gate (100 meters)). The statistics for each
parameter relative to the ensemble mean are shown below.
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DSD Model Descriptions

The DSD retrieval models assume different functional forms
of the DSD and are divided into two numerical classes. The
flow diagrams for the two classes are shown to the right and
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D,, & R Statistics at 3.2 km

The top panel shows the 920-MHz profiler reflectivity for the precipitation
event that passed over the Darwin, Australia, profiler site on 16 February
2003. Panel (b) shows the reflectivity at 3.2 km. The mean and standard
deviation of the ensemble D,,, and R are shown for the 3.2 km altitude in
panels (c) and (d).
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c. Estimated Mean Diameter, Dm, at 3.2 km (unns of mm)
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d. Estimated Rain Rate, R, at 3.2 km (units of mmvhr)
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Concluding Remarks

Given the same inputs from two vertically pointing profiling radars (one radar providing the vertical air motion
and spectral broadening estimates and the other providing the radar Doppler velocity spectrum), the raindrop
size distribution (DSD) at each range gate is estimated using 16 different retrieval models. The statistics of
the different retrieved DSD parameters relative to the ensemble mean provides an estimate of the
Measurement Error for the DSD retrievals.

Using the observations from 16 February 2003 at Darwin, Australia, the ensemble statistics indicate:
* the variation in D,, relative to the ensemble mean has a standard deviation of about 0.1 mm.
l * the variation in relative rain rate difference has a standard deviation of about 11%b.

These statistics do not provide any information on the absolute error of the profiler retrievals compared with
other instruments. Those statistics will be performed in a future study.
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