Contributing Efforts to DAURE using the Proton Transfer Reaction Technique for VOC Analysis

M. Müller, A. Metzger, S. Schallhart, A. Wisthaler, A. Hansel

Institute of Ion Physics and Applied Physics, University of Innsbruck, Austria

DAURE 2009

Environmental Physics & Ion-Molecule-Reactions

PTR-MS:

Reaction: $\text{H}_3\text{O}^+ + \text{VOC} \rightarrow \text{VOCH}^+ + \text{H}_2\text{O}$
What do we detect:

- Most hydro carbons and derivates
 - Terpenes
 - Aromatics

- Photo oxidation products and other oxyVOCs
 - Ketones
 - Aldehydes
 - Alcohols

- Aerosol precursors
 - DMS and oxidation products (DMSO)
 - High molecular species (semi volatile)

Performance Summary PTR-MS:

Advantages:
- Compact organic trace gas analyser
- Mostly non dissociative ionization
- Excellent sensitivity
- Low limit of detection ~10 pptv

Disadvantage:
- Poor selectivity
Performance Summary HR PTR-TOF:

- Detects all ions in one instant
- Separation of isobars is possible
- Identification of the elemental composition
- Low pptv range LOD @ 1 min
 - Aromatics (7ppt)
 - Acetonitrile (5ppt)
 - a-Pinene (5ppt)
- High sensitivity
What do we have till now?

Biogenic emissions

![Graph showing biogenic emissions over time.]

Biomass burning?

![Graph showing biomass burning emissions over time.]

DAURE 2009
To discuss: Inlet @ the right place?

THANK YOU