Work done and future plans

- Improve emission sources:
 - Agriculture and livestock emissions
 - Sea salt emissions
 - Fugitive emissions: paved road emissions
 - Biogenic emission factors: isoprene

- Implementation of the new DREAM model configuration (size distribution 8 bins).

- Provide an updated model simulation for the DAURE campaign:
 - Hindcast simulation
 - New emissions updates
 - CMAQv4.7 – CB05-aero5

- Publications:
 - Description of the meteorological conditions for DAURE
 - Modelling results of DAURE campaign
Modelling work

- All updates in emission and modelling setup are first tested on a hindcast simulation of 2004
- Improvements of CALIOPE system:
 - Agriculture and livestock emissions – Top-down approach from EMEP
 - Isoprene emissions updated
 - Sea salt contribution
 - BSC-DREAM8b
 - Fugitive emissions: paved road emissions – CSIC measurements

- Pending tasks:
 - Update to CMAQ4.7 – CB05-Aero5
 - Rerun DAURE simulations – Scheduled for February 2010

- Publications:
 - Meteorology: in preparation
 - Modelling: we will start after the new results
Sea salt aerosol results

- Emissions of SSA from the open ocean are calculated as a function of wind speed and relative humidity following the parameterizations of Gong (2003) and Zhang et al. (2005).

- SSA emissions are speciated into Na⁺, Cl⁻, and SO₄²⁻, and are distributed by size to the accumulation and coarse modes.

- Thermodynamic equilibrium between the accumulation-mode and the gas phase (which now includes HCl) are treated within the ISORROPIA equilibrium module.

- Cl⁻, Na⁺ and SO₄²⁻ in the coarse mode are treated as inert tracers. For thermodynamic calculations, hydrochloric acid (HCl) has been added to the nonreactive species list.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mean model</th>
<th>Mean obs</th>
<th>NDATA</th>
<th>cor</th>
<th>MFB</th>
<th>MFE</th>
<th>RMSE</th>
<th>MB</th>
<th>MAE</th>
<th>MNBE</th>
<th>MNGE</th>
<th>UPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>MAM</td>
<td>0.6</td>
<td>1.9</td>
<td>147</td>
<td>0.61</td>
<td>-103</td>
<td>108</td>
<td>2.2</td>
<td>-1</td>
<td>1.3</td>
<td>-66.1</td>
<td>68.1</td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>0.3</td>
<td>0.7</td>
<td>149</td>
<td>0.28</td>
<td>-109.7</td>
<td>9.9</td>
<td>-0.3</td>
<td>0.6</td>
<td>-39.9</td>
<td>83.7</td>
<td>-46.4</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>0.5</td>
<td>1.6</td>
<td>140</td>
<td>0.55</td>
<td>-89.2</td>
<td>108</td>
<td>2</td>
<td>-0.9</td>
<td>1.2</td>
<td>-36.4</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td>EFD</td>
<td>0.7</td>
<td>2.6</td>
<td>126</td>
<td>0.62</td>
<td>-72.5</td>
<td>120.4</td>
<td>3.3</td>
<td>-1.9</td>
<td>2</td>
<td>-77.8</td>
<td>79.3</td>
</tr>
<tr>
<td>NH₄</td>
<td>MAM</td>
<td>0.6</td>
<td>2.1</td>
<td>147</td>
<td>0.39</td>
<td>26.8</td>
<td>102.1</td>
<td>2.1</td>
<td>-1.5</td>
<td>1.5</td>
<td>-61.1</td>
<td>64.2</td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>0.3</td>
<td>0.7</td>
<td>149</td>
<td>0.4</td>
<td>32.1</td>
<td>100.9</td>
<td>1.7</td>
<td>-1.1</td>
<td>1.1</td>
<td>-42.1</td>
<td>94.1</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>0.6</td>
<td>1.7</td>
<td>140</td>
<td>0.51</td>
<td>68.5</td>
<td>83.7</td>
<td>1.6</td>
<td>-1.1</td>
<td>1.1</td>
<td>-38.1</td>
<td>62.4</td>
</tr>
<tr>
<td></td>
<td>EFD</td>
<td>0.5</td>
<td>1.9</td>
<td>126</td>
<td>0.42</td>
<td>-99</td>
<td>109</td>
<td>2.5</td>
<td>-1.4</td>
<td>1.5</td>
<td>-54.7</td>
<td>71.8</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>MAM</td>
<td>2.1</td>
<td>3.3</td>
<td>147</td>
<td>0.65</td>
<td>88.4</td>
<td>87.6</td>
<td>2.5</td>
<td>-2</td>
<td>2</td>
<td>-56.2</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>2.1</td>
<td>4.3</td>
<td>149</td>
<td>0.87</td>
<td>85.5</td>
<td>70.2</td>
<td>2.8</td>
<td>-2.2</td>
<td>2.2</td>
<td>-44.1</td>
<td>90.8</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>1.5</td>
<td>3.5</td>
<td>140</td>
<td>0.72</td>
<td>62.4</td>
<td>65.2</td>
<td>2.9</td>
<td>-2.1</td>
<td>2.2</td>
<td>-53.0</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>EFD</td>
<td>0.8</td>
<td>2.9</td>
<td>126</td>
<td>0.42</td>
<td>-107</td>
<td>107.3</td>
<td>3.4</td>
<td>-2.2</td>
<td>2.2</td>
<td>-66.6</td>
<td>67.5</td>
</tr>
<tr>
<td>OC+EC</td>
<td>MAM</td>
<td>1.1</td>
<td>4.3</td>
<td>147</td>
<td>0.51</td>
<td>-113</td>
<td>120.3</td>
<td>3.9</td>
<td>-3.1</td>
<td>3.1</td>
<td>-51.8</td>
<td>88.3</td>
</tr>
<tr>
<td></td>
<td>JJA</td>
<td>1.2</td>
<td>4.6</td>
<td>149</td>
<td>0.39</td>
<td>-110</td>
<td>118.4</td>
<td>4.9</td>
<td>-3.2</td>
<td>3.4</td>
<td>-59.1</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>SON</td>
<td>1.3</td>
<td>5.7</td>
<td>140</td>
<td>0.45</td>
<td>-107</td>
<td>112.5</td>
<td>5.5</td>
<td>-4.1</td>
<td>4.2</td>
<td>-61.2</td>
<td>70.7</td>
</tr>
<tr>
<td></td>
<td>EFD</td>
<td>1.2</td>
<td>5.8</td>
<td>126</td>
<td>0.54</td>
<td>-125</td>
<td>120.7</td>
<td>6</td>
<td>-4.5</td>
<td>4.6</td>
<td>-73.2</td>
<td>75.1</td>
</tr>
</tbody>
</table>
Meteorological description

- Paper being written:
 - The DAURE field campaign: meteorological overview
 - Description of main synoptic patterns
 - Relevant mesoscale features identified
 - Discussion of high-resolution Lagrangian backtrajectories with FLEXPART-WRF

- New available meteorological datasets:
 - Meteocat surface meteorological observations
 - Barcelona radiosoundings

Meteorological description – Winter campaign

- NW-N advection
- Sea-breeze circulations
- PCP event
- Low at SE IP
26/2/2009 5 UTC

MS | BCN

700 hPa

MSY

Arrival at 50 m a.g.l.

Arrows every hour

Big arrow – surface

Small arrow – aloft

27/2/2009 12 UTC

MS | BCN

700 hPa

MSY

Arrival at 50 m a.g.l.

Arrows every hour

Big arrow – surface

Small arrow – aloft
Meteorological description – Summer campaign
Thanks for your attention