Laser Vaporizer-AMS for detection of airborne metal nanoparticles

Patrik Nilsson
A. C. Eriksson1, M. E. Messing2, C. Isaxon1, M. Hedmer3, H. Tinnerberg3, B. O. Meuller2, C. R. Svensson1, K. Deppert2, M. Bohgard1, T Onasch4 and J. Pagels1

1Ergonomics and Aerosol Technology, Lund University, Sweden
2Solid State Physics, Lund University, Sweden
3Occupational and Environmental Medicine, Lund University, Sweden
4Aerodyne Research, Billerica, MA, USA
Introduction

The possibilities with the LV-AMS is more than just detection of soot

• Nanotechnology
 – Determine the amount of impurities on produced particles
 – Determine the relative amount of constituents in alloys and oxidation degree of metaloxides.
 – Get insight of the particle shape and density without TEM analysis

• Nano safety
 – Emission measurements

Gold nanoparticle GaAs Nanowires
Methods: Metal particle generator setup

- Generation of metal particles was performed with either a High Temperature furnace (HT) or a Spark Discharge generator (SDG)

 - Generated particles: \textbf{Au, Pd, Ag, PdAg, FeO, CuO}
Methods: Particle beam and laser alignment

- Particle beam
 - Ion extraction
 - Tungsten vaporizer
 - Laser vaporization
 - Ammonium nitrate 400 nm
 - Regal black soot (rBC) 350 nm
- Laser vaporization
- Tungsten vaporizer
- Ion extraction
- Particle beam

Aerodyne Research Inc.
Methods: Determination of relative ionization efficiencies

- \[C_S = \frac{\sum_i I_{s,i}}{\text{RIE}_S \cdot \text{mIE}_{NO_3} \cdot Q} \] [\mu g/m^3] \quad \text{(Onasch et al. 2012)}

- \[\text{RIE}_S = \frac{\text{mIE}_S}{\text{mIE}_{NO_3}} \]

- The mass specific ionization efficiency (mIE_s, [ions/pg]) was determined by calculating mass/particle and ions/particle.

\[
m_{tot} = N \frac{\pi}{6} \rho_{eff} d_m^3
\]

\[
\rho_{eff} = \frac{d_{va}}{d_m} \rho_0
\]

\[I_s \quad = \text{AMS signal-strength of species S [Hz]}
\]
\[\text{RIE}_s \quad = \text{Relative ionization efficiency of species S}
\]
\[\text{mIE}_{NO_3} \quad = \text{Mass specific ionization efficiency of Nitrate [ions/pg]}
\]
\[Q \quad = \text{Sampling flow} \quad [1.5 \text{ cm}^3/\text{s}]
\]
\[N \quad = \text{Total number conc. [cm}^{-3}]\]
Results: Mass specific ionization efficiencies

30 nm (d_m) Au particles

- $mIE_{NO3} = 1000$ ions/PG
- $mIE_{Regal\ black} = 155$ ions/PG
- $mIE_{Au} = 18$ ions/PG

Slopes:
- mIE_{NO3}: 18.3
- $mIE_{Regal\ black}$: 14.2
- mIE_{Au}: 18.3

Picogram/particle vs. ions/particle graph.
Results: Relative ionization efficiencies (RIE)

Isotopes
- Au: 197
- Pd: 102, 104, 105, 106, 108, 110
- Ag: 107, 109
- FeO: 54, 56, 57, 58 (+ 16)
- CuO: Not vaporized/detected

<table>
<thead>
<tr>
<th>Agglomerates</th>
<th>Regal black</th>
<th>Au</th>
<th>Pd</th>
<th>Ag</th>
<th>PdAg</th>
<th>Fe (FeO)</th>
<th>Cu (CuO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRIE (ions/pg)</td>
<td>155</td>
<td>18</td>
<td>9</td>
<td>31</td>
<td>22</td>
<td>27</td>
<td>Not Vaporized</td>
</tr>
<tr>
<td>RIE (mRIE_s/mRIE_rBC)</td>
<td>1</td>
<td>0.12</td>
<td>0.06</td>
<td>0.20</td>
<td>0.14</td>
<td>0.17</td>
<td>Not Vaporized</td>
</tr>
</tbody>
</table>
Results: Laser intensity vs. signal strength

Complete vaporization!
Results: Emission measurements during maintenance of particle generator setup

A – Background
B – Cleaning HT generator
C – Cleaning SDG generator
D – Cleaning DMA
Conclusions

• The mass specific ionization efficiency for the metal particles are lower compared to soot particles
 – Alignment of laser / particle beam / ion extraction

• Promising tool to investigate important particle characteristics in nanoparticle production
 – Relative amounts in alloys
 – Amounts of impurities
 – Density/Shape of particles

• Useful technique for emission measurements
 – Free nanoparticle emissions where identified during some steps in the maintenance procedure
 – Deal with problems due to background particles
 – Can not be used on a routine basis
Extra slides
Results: Mass spectra (Au)

- All tested metal species, except CuO, were detected.

 Isotopes

 - Au: 197
 - Pd: 102, 104, 105, 106, 108, 110
 - Ag: 107, 109
 - FeO: 54, 56, 57, 58
 - CuO: Not vaporized/detected

30 nm (d_m) Au particles

\[d_m = \text{mobility diameter} \]
Results: Mass spectra alloy (PdAg)

Isotopes
Pd: 102, 104, 105, 106, 108, 110
Ag: 107, 109
Acknowledgements

• This work was supported by

FAS-centre METALUND.

Nanometer Structure Consortium at Lund University (nmC@LU)

The Swedish research council FAS through project 2009-1291

Svenska Försäkringsföreningen

Thank you for listening!
Results: Determination of effective density from Particle Time of Flight

Sintered HT furnace Au particles

\[\rho_{eff} = \frac{d_{va}}{d_m} \rho_0 \]

\(d_{va} = 420 \text{ nm} \)
\(d_m = 30 \text{ nm} \)
Dens. = 14 g/cm³

Eff dens (g/cm³) vs. Mobility diameter (d_m) for Au Agglomerates

- DMA-AMS
- DMA-APM
Transit of Soot Particles Across Laser Beam

- 5-20 microsecond evaporation time
- Coatings evaporate first at relatively low temperatures (<600°C) potentially dependent upon vapor pressures
- Core evaporates last at high temperature (>1000°C) under SP2-like incandescence conditions
- Coating and core material ionized and detected with mass spectrometry

Aerodyne Research Inc.
Aerodyne Research Inc.