PM2.5 Lens

14th Annual AMS Users Meeting
September 7, 2013

Leah Williams, Phil Croteau, Thorsten Hohaus, John Jayne, Wade Robinson, Tim Onasch, Manjula Canagaratna, Doug Worsnop, Lino Gonzalez, Jay Peck, Greg Magoon, Mike Timko
Particle Focusing in the Lens

- 1.3 Torr inlet
- 10⁻³ torr exit

- Computational Fluid Dynamics (Fluent)
 - Calculate particle trajectories for different lens and inlet configurations
 - Calculate fraction that impact vaporizer (transmission efficiency)
• Computational fluid dynamics modeling of high pressure lens and inlet
 → semi-analytical model
 → new design for standard lens.

Larger particles lost at 2nd and 3rd aperture.
PM 2.5!
Particle velocities are higher than standard lens, but b velocity curve does not flatten at large sizes the way the HP lens does.
Lens alignment -- different size particles (300 nm to 2.5 micron) focus in roughly the same place.
Next:
• Improve machining – better small particle transmission, better alignment.
• Test transmission efficiency in ACSM (shorter chamber) and TOF-ACSM (different pumping).