PIKA fits of CO$^+$ for highly-oxidized wood-burning POA & comparison to standard EA, f_{44}

Joel C. Carbon and Amewu A. Mensah

Institute for Atmosphere and Climate, ETH Zürich, Switzerland.
AMS organics during wood-burning

- Start of burn; high organics (50 vol% OM)
- Flaming phase, high rBC (5 vol% OM)
AMS Wood-stove POA (primary organic aerosol)

- Consistent with CE=0.7 determined by Alfarra et al. 2007 without CO$: f_{CO^+}=0.3 (\rightarrow CE=1)$

- OM/OC (2.3 ± 0.2) consistent with Turpin and Lim 2006 (2.4 ± 0.2) non-AMS wood-OA data

- Default OM/OC = 1.8 ± 0.1

 OM/OC = 2.0 ± 0.2 with default H$_2$O frag; OM/OC = 1.8 ± 0.1 with all default frags
V-mode m/z 28: CO$^+$ before N$_2^+$

- Mass loading \sim50 μg m$^{-3}$ ($f_{CO^+} \sim 0.3$)
- See also Ortega et al. (ACPD 2012)
High loadings needed to fit CO$^+$
1. Comparing O:C and f_{44} with and without CO$^+$

Assuming $\{\text{orgH2O}\} = 0.225 \times \{\text{CO}_2\}$
Impact of CO$^+$ on elemental ratios

Mexico City: Heald et al., GRL 2010. (2) “Default CO$^+$”: Aiken et al., 2008. (3) Chen et al., ES & T 2011
Impact of CO$^+$ on parameterized “O:C” from f_{44}

y-axis: Aiken et al. (EST 2008) ambient O:C parameterization
Impact of CO\(^+\) on \(f_{43} / f_{44}\)

\[f_{44} = f_{\text{CO}_2} \]

\[f_{43} = \Sigma f_{\text{all ions}} \]

\(f_x \) defined as UMR equivalent. Would “agree” with ambient data if uncorrected.
Take-home Messages

1. CO$^+$ can be fit in PIKA for high loadings, with the right tuning and mass spectrometer.

2. The default frag table represents ambient OA (\rightarrow OH–photochemistry), and is likely inappropriate for other fresh organics.

3. Can be important to get mass right.

Finer details:

- When PIKA fits don’t work, lab studies can use (i) m/z 28 baseline, (ii) m/z 28 : m/z 32 (iii) PToF (HR or UMR)

- Wood-burning spectra can be considerably less oxidized than shown$^{1-4}$, but similar spectra (excluding CO$^+$) have been observed in lab$^{5-6}$ and possibly field7

- Sources giving less-oxidized aerosol are likely to have less CO$^+$ contribution (although C$_2$H$_4^+$ 28.0313 should not be forgotten8)
