# Collection efficiency of SP-AMS for internally mixed particulate black carbon

M.D. Willis, A.K.Y. Lee, J.P.D. Abbatt University of Toronto, Toronto, Canada

T.B. Onasch, E.C. Fortner, L. Williams, A. Lambe, D.R. Worsnop Aerodyne Research Inc., Billerica, Massachusetts, USA

#### CE issue: Tungsten vaporizer vs. laser vaporizer

#### **CE issue: Particle bounce off from tungsten vaporizer**



CE issue: Particle beam – SP laser overlap



 $d_{PB} > d_{LB} \rightarrow$  What is the collection efficiency of laser vaporizer for BC?

#### Objectives of this work

 To understand the effects of mixing state of aerosol particles (bare BC vs. internally mixed BC) on the quantification of atmospheric BC using SP-AMS.

 To provide insights for evaluating the current calibration procedure for atmospheric BC quantification.

#### Experimental setup



#### Summary of coating experiments

Lens transmission ≈ 1

| Regal Black Core Size $(d_m, nm)$ | Final d <sub>va</sub> (nm) | $\mathrm{f}_{RB}$ |
|-----------------------------------|----------------------------|-------------------|
| 250, 300, 400                     | 180, 205, 255              | 1.0               |
| 300                               | 222                        | 0.88              |
| 300                               | 255                        | 0.72              |
| 300                               | 313                        | 0.52              |
| 300                               | 355                        | 0.33              |
| 200                               | 285                        | 0.26              |
| 150                               | 275                        | 0.20              |
| 75                                | 250                        | 0.15              |
|                                   |                            |                   |

f<sub>RB</sub> = mass of black carbon/total mass of black carbon and organics

### Sensitivity to Regal Black (RIE<sub>BC</sub>)



#### Beam Width Probe (BWP) Measurement

Mass concentration of species "s"

$$C_s = \frac{1}{CE_s \cdot RIE_s \cdot mIE_{NO_3} \cdot Q} \sum_{i} I_{s,i}$$

$$CE = E_L \cdot E_S \cdot E_B$$

 $E_L = Aerodynamic lens transmission$ 

 $E_B$  = Particle bounce off the vaporizer

 $E_S$  = Particle beam divergence

$$E_L \approx 1$$
 (Dva = 180-355 nm)  
 $E_R = 1$  (no bouncing issue on laser vaporizer)

E<sub>s</sub> governs the overall CE for black carbon

→ Beam width probe measurement



= 0.5 mm diameter

#### Beam Width Probe (BWP) Measurement



#### BWP Measurement (from Aerodyne)



#### Particle beam width comparison



#### Particle Beam Width Comparisons



- Particle beam widths: DOS coated RB ~ pure DOS/AN particles
- Laser beam width is  $\leq \sigma \sim 0.1$  to 0.25 mm

#### SP-AMS vs. SP2 Mass Loadings

#### CalNex2010





The CE is low when size is small.

# Sensitivity to BES coating (RIE<sub>organics</sub>)



## RIE<sub>organics</sub> vs. RIE<sub>BC</sub> (from Aerodyne)



 Org and rBC signal transmissions decrease together with increasing DOS coating and narrowing of particle beam, suggesting that the effective particle beam widths for rBC and DOS are similar

### f<sub>BC</sub> relationship: SP-AMS vs. APM



Taking into account changing RIE for rBC and BES as the particle beam becomes narrower. SP-AMS can provide an accurate quantification of rBC down to 5% by mass for internally mixed particles.

#### Summary

- The collection efficiency of the SP-AMS is a function of the mixing state of rBC particles. Organic coating can narrow the particle beam width of BC, increasing the degree of laser beam – particle beam overlap.
- Ambient black carbon and thickly coated regal black particles have similar particle beam width, highlighting the importance of evaluating the current calibration procedure for rBC quantification.
- BWP measurements suggest that the effective SP-laser beam width (sigma) is ≤ 0.25 mm. Further investigation is required.
- Given accurate RIE values for lab-generated rBC particles and organic coating, the SP-AMS can provide an accurate quantification of rBC down to 5% by mass for internally mixed particles.