

Measuring Aerosol Optical Properties Using CAPS

Timothy B. Onasch, Paola Massoli, Paul L. Kebabian, Frank B. Hills and **Andrew Freedman**

Center for Sensor Systems and Technology Aerodyne Research, Inc.

45 Manning Road Billerica, MA 01821 www.aerodyne.com

Supported by U.S. Dept. of Energy, NASA and the National Institutes of Health

Critical Aerosol Optical Parameters for Climate Change Modeling

- Optical Extinction (Visibility⁻¹) Total Attenuation of Light Extinction = Scattering + Absorption
- Single Scattering Albedo (SSA)
 Partitioning Between Scattering and Absorption
 SSA = Scattering/Extinction
- Asymmetry Parameter

 Directionality of Scattering Component
 Optics Letters 37:3654 (2012)

Measuring Extinction with CAPS PM_{ex} Exactly Like Laser Cavity Ringdown

No Laser Don't Measure the Ringdown Time

- Cavity Enhanced Technique
- LED Light Source
- Detection of Phase Shift

 $\mathsf{Ext} = [2\pi \mathsf{f}/\mathsf{c}][\mathsf{cot}\vartheta - \mathsf{cot}\vartheta_0]$

A. Petzold, T. Onasch, P. Kebabian, and A. Freedman Atmos. Meas. Tech., 6:1141–1151(2013)

SSA Monitor Approach Measure Scattering and Extinction on the Same Sample Volume

- Scattering Is Self Calibrating Scattering is Ratioed to Extinction Absolute Accuracy is Not an Issue Lack of Suitable Standards for Absorption
- Minimal Sampling Artifacts Compared to 2 Instruments Inlet Issues – Unequal Flow Rates
 - Time Response
- No Wavelength Correction Required

Measuring Scattering Using An Internal Nephelometer

Collimated Light Source

- Integrating Sphere (d = 10 cm) to Collect Scattered Light
- Lambertian Surface
 Photons Are Randomly Scattered (Cosine Distribution)
 No Bias with Respect to Initial Scattering Angle
- Photomultiplier Tube Measures Scattered Light
- Scattered Light Calibrated Using White Particles (SSA=1.0) Ratioed to Measured Extinction

Precision

Allan Analysis (630 nm)

Truncation

Typical Accumulation Mode Correction 2-6%

Ambient Monitoring Comparison with MAAP/CAPS

- PM 2.5 Cutoff Located on Roof
- 17 Ipm Sample Flow
- PM_{ssa} Sampled Through Isokinetic Probe
- SSA Derived from PM_{ssa} and MAAP/CAPS Combination
- Truncation Correction
 1.025

Absorption Measurement At Low SSA PM_{ssa} Preferred Way to Measure Absorption

- Extinction is the Most Accurate Optical Measurement
- Error in Scattering Contributes Little to Accuracy of Absorption Determination

Absorption Measurement At High SSA Accuracy is the Issue

NCSR- Demokritos, Athens, Greece

Courtesy of Kostas Eleftheriadis

Conclusion

 CAPS PM_{ssa} Autonomous Operation Fast Time Response ~1 second Rugged

- Precision <1 Mm⁻¹ (1s) in Both Channels
- Accuracy SSA ±2% (dependent on truncation) Extinction ±5% (?)

Tim Onasch

Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings Saturday, 12:15 OP22-3 Room B (104+105)

Andy Freedman

Optical Measurements of Aircraft Engine Soot Emissions Saturday, 14:45 OP49-2, Room D (109-110)