Measuring Aerosol Optical Properties Using CAPS

Timothy B. Onasch, Paola Massoli, Paul L. Kebabian, Frank B. Hills and Andrew Freedman

Center for Sensor Systems and Technology
Aerodyne Research, Inc.

45 Manning Road
Billerica, MA 01821
www.aerodyne.com

Supported by U.S. Dept. of Energy, NASA and the National Institutes of Health
Critical Aerosol Optical Parameters for Climate Change Modeling

• Optical Extinction (Visibility$^{-1}$)
 Total Attenuation of Light
 Extinction = Scattering + Absorption

• Single Scattering Albedo (SSA)
 Partitioning Between Scattering and Absorption
 SSA = Scattering/Extinction

• Asymmetry Parameter
 Directionality of Scattering Component
 Optics Letters 37:3654 (2012)
Measuring Extinction with CAPS PM\textsubscript{ex}

Exactly Like Laser Cavity Ringdown
No Laser
Don’t Measure the Ringdown Time

- Cavity Enhanced Technique
- LED Light Source
- Detection of Phase Shift

$$\text{Ext} = [2\pi f/c][\cot \phi - \cot \phi_0]$$
A. Petzold, T. Onasch, P. Kebabian, and A. Freedman
SSA Monitor Approach
Measure Scattering and Extinction on the Same Sample Volume

• Scattering Is Self Calibrating
 Scattering is Ratioed to Extinction
 Absolute Accuracy is Not an Issue
 Lack of Suitable Standards for Absorption

• Minimal Sampling Artifacts Compared to 2 Instruments
 Inlet Issues – Unequal Flow Rates
 Time Response

• No Wavelength Correction Required
Measuring Scattering Using An Internal Nephelometer

Collimated Light Source

- Integrating Sphere \((d = 10 \text{ cm})\) to Collect Scattered Light
- Lambertian Surface
 Photons Are Randomly Scattered (Cosine Distribution)
 No Bias with Respect to Initial Scattering Angle
- Photomultiplier Tube Measures Scattered Light
- Scattered Light Calibrated Using White Particles \((SSA=1.0)\)
 Ratioed to Measured Extinction
Calibration

Linearity

\(\lambda = 630 \text{ nm} \)

Intercept = 0.15 ± 0.2
Slope = 1.00 ± 0.0004

Ammonium Sulfate
Precision

Allan Analysis (630 nm)
Truncation

Monodisperse

- 630 nm (RED)
- 450 nm (BLUE)

Polydisperse

\[\lambda = 530-550 \text{ nm} \]

Refractive Index = 1.46

Lognormal Particle Size Distribution (\(\sigma = 1.8\))

Typical Accumulation Mode Correction 2-6%
Ambient Monitoring
Comparison with MAAP/CAPS

- PM 2.5 Cutoff Located on Roof
- 17 lpm Sample Flow
- PM$_{ssa}$ Sampled Through Isokinetic Probe
- SSA Derived from PM$_{ssa}$ and MAAP/CAPS Combination
- Truncation Correction 1.025
Absorption Measurement
At Low SSA
PM_{ssa} Preferred Way to Measure Absorption

- Extinction is the Most Accurate Optical Measurement
- Error in Scattering Contributes Little to Accuracy of Absorption Determination
Absorption Measurement At High SSA
Accuracy is the Issue

NCSR- Demokritos, Athens, Greece

$<BC> = 375 \text{ ng m}^{-3}$

$<SSA> = 0.90$

$\lambda = 630 \text{ nm}$

Courtesy of Kostas Eleftheriadis
Conclusion

- CAPS PM_{ssa}
 Autonomous Operation
 Fast Time Response ~1 second
 Rugged

- Precision <1 Mm^{-1} (1s) in Both Channels

- Accuracy SSA \pm 2\% (dependent on truncation)
 Extinction \pm 5\% (?)

Tim Onasch
Multi-Wavelength Measurement of Soot Optical Properties:
Influence of Non-Absorbing Coatings
Saturday, 12:15 OP22-3 Room B (104+105)

Andy Freedman
Optical Measurements of Aircraft Engine Soot Emissions
Saturday, 14:45 OP49-2, Room D (109-110)