

Preliminary results from the 2016 ACTRIS2 Q-ACSM intercomparison at the Aerosol Chemical Monitor Calibration Centre (ACMCC)

Olivier Favez, Evelyn Freney, Valérie Gros, Tanguy Amodeo, François Truong, Yunjiang Zhang, Jean Sciare Phil Croteau, John Jayne

2016 ACTRIS-2 ACSM intercomparison exercice at the ACMCC

Goal: Homogenous quality-controlled ACSM datasets at a European scale

- ✓ Intercomparison campaign took place March/April 2016. A total of 21 instruments.
- ✓ In order to accommodate all applications to the intercomparison exercise, two separate calibration exercises were organized.

Participating stations: Intercomparison Spring 2016 Q-ACSM ACSM Stations ACTRIS • EMEP (summer + winter) ToF-ACSM yytiälä EMEP (winter) OEMEP (summer) **HR-AMS** Did Not Attend Rugsteliskies Vilnius Mace Head Kensington Melpitz Pietro Capoflume

Agia Marina Xyliatou

pmap.de (

Site	Intercomparison Q-ACSM ToF-ACSM		
Hohenpeissenberg			
FMI –Hyytiala			
Cyprus			
Melpitz			
Finokalia			
London			
Bologna			
Madrid			
Vavihill			
SMEAR			
Zurich			
JFJ			
Bucharest			
Barcelona			
PUY			
SIRTA			
CapCorse			
Tartu			
ToFwerk			

2016 ACTRIS-2 ACSM intercomparison exercice at the ACMCC

Organization:

- 1. Three to four days pre-calibration intercomparison.
- 2. Calibration using single and mixed inorganic solutions
- 3. Three to four days post-calibration intercomparison (extended for ToF-ACSM).

1. 'Standard' Calibration set-up

Like normal ACSM Calibration Setup but with CPMA after DMA CPMA selects particles by Mass/Particle Combined with DMA, this eliminates Q2s

Some examples of individual instrument comparisons

Comparison with reference instrument

BEFORE

Some examples of individual instrument comparisons

Comparison with reference instrument

	RIENH4 STD	RIESO4 STD	RIESO4 MIX	RIENH4 MIX
Original	6.23	0.42	-	-
Calibrated	4.81	0.32	0.98	5.54

BEFORE

Q-ACSM after-calibration intercomparison

Some examples of individual instrument comparisons

Comparison with reference instrument

	RIENH4 STD	RIESO4 STD	RIESO4 MIX	RIENH4 MIX
Original	6.23	0.42	-	-
Calibrated	4.81	0.32	0.98	5.54

Q-ACSM after-calibration intercomparison

Q-ACSM after-calibration intercomparison

Instrument performance evaluated against the Median using the Z-score method

Collection vs. transmission efficiency

Evalulation criteria (Error associated with instrument transmission and collection)

CE: Correction for collection efficiency of indiviual instruments depends on composition and phase

Instruments are then corrected using a chemical dependant collection efficiency (CDCE).

Assuming that when particles contain a high fraction of ammonium nitrate that they are more efficiency sampled (more liquid)

The instrument to instrument variation in the CDCE =5%

Collection vs. transmission efficiency

Evalulation criteria (Error associated with instrument transmission and collection)

Lens transmission efficiency

- For this exercise, standard AN calibrations were performed at various size of (relatively large particles) on different instruments
- The lens transmission efficiency (E_L) is calculated as the ratio between RFNO3 obtained for a given size and RFNO3 obtained at 300 nm

If 50% of the mass > 400 nm \Rightarrow tot. mass may be off by up to 20%

⇒ May induce much more bias than CDCE calculations

ACMCC: ACTRIS2_First intercomparison analysis and reporting

Evalulation criteria (Conclusion)

Error1

Calibration repeatability: Variation in calibration value (3 to 4 calibrations were performed on each instrument)

Max. Error of 15%

TE: Transmission efficiency error.. Depending on the particle size measured the lens TE varies..

Max. Error of 25%

CE: Collection efficiency correction.

Depending on the particle chemical composition and morphology..

Error in CDCE based on chemical composition

Max. Error of 5%

Propagation of errors

$$\sqrt{\sum Error1^2 + Error2^2 + Error3^2}$$

30% at max.

ACMCC: ACTRIS2_First intercomparison analysis and reporting

Instrument falls within ± 30% of the « reference » instruments

PM1 of all instrument compared with PM1 of SIRTA instruments. Dotted line indicates ± 30% error light points represent TEOM-FDMS, black points represent ACSM data

PM1 SIRTA (REF)

ToF-ACSM calibration data

Pieber et al., 2016

Might be worthy to check if m/z43 - related corrections could be needed in some cases

S/N

m/z 30 from pure $(NH_4)_2SO_4$

Conclusions

- The ACSM is still a research instrument on which we have to keep performing research activities
- The data acquired during the ACMCC intercomparison exercises will be used to further determine robust uncertainties for these instruments
- Calibrations in acquisition mode ('mixture calibrations') significantly improved the accuracy of SO4 measurements
- Tunning of ACSM (AMS) Analog Input used for CPC reading has to be checked
- Encourage users to check for size dependent lens transmission efficiency of each individual instrument
- Some more 'Pieber effects' to come .. (→ some more optimisation of the frag table ?)