

Predicting AMS Spectra using Cheminformatics and Machine Learning

James Allan & David Topping
University of Manchester & National
Centre for Atmospheric Science

<u>Or:</u>

Reports of the Horse's Death Have Been Greatly Exaggerated

James Allan & David Topping
University of Manchester & National
Centre for Atmospheric Science

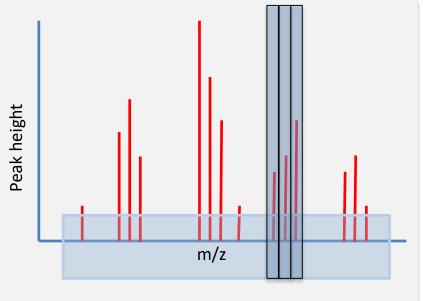
Predicting AMS Mass Spectra

- We have, by now, a large library of mass spectra for laboratory standards
- Behaviours in mass spectral peaks (m/z=44, 43, 57, etc.) have been quantitatively attributed to chemical functionalities (e.g. aliphatic chains, acids, carbonyls, etc.)
- Can we use this information such that a complete mass spectrum can be predicted based on any functionality?
- Can we arbitrarily predict what the mass spectrum of any molecule should look like?

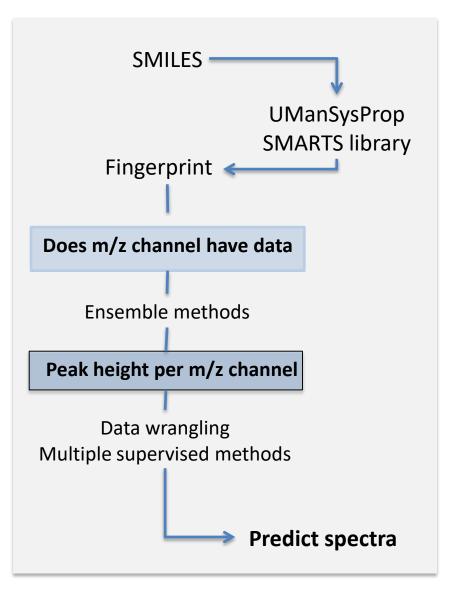
Cheminformatic Jargon

- Simplified Molecular-Input Line-entry System (SMILES): Method of representing molecular structures using ASCII strings
- Features: A property of a molecule based on functional groups and structure
 - e.g. "Alkyl group 3 carbons down from an alcohol group", "group attached to a ring that has potential to change tautomeric form", etc.
- SMiles ARbitrary Target Specification (SMARTS): A method of querying SMILES for features
- Fingerprints: A summary of the important features within a molecule
- These form the basis of the cheminformatic tools used in UManSysProp

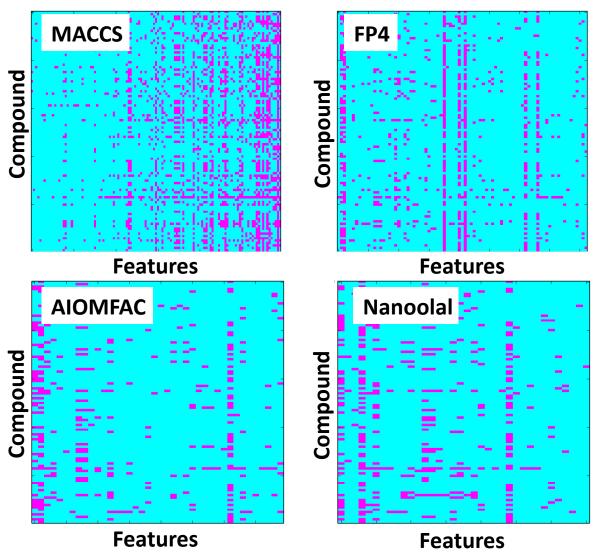
Training data



Model development



Fingerprinting



- Different fingerprinting methods were tested:
 - MACCS and FP4 were developed for generic applications
 - AIOMFAC and Nanoolal were developed specifically for activity and vapour pressure estimation
- Each magenta box represents a feature identified for a given compound according to a different SMARTS library
- Max number of unique features that could be extracted:
 - MACCS 162
 - FP4 320
 - AIOMFAC 82
 - Nanoolal 76

Learning algorithms

When simply evaluating predicted spectra against spectral library, choice of fingerprint affects performance. However, choice of supervised method more important if we only use these values

	Key:					
Method	MACCS®keys FP4	AIC)M Nan			
SVM ⊞ BF	0.71	0.67	0.66	0.68		
SVM⊞oly	0.60	0.63	0.62	0.62		
SVMalin	0.56	0.65	0.68	0.66		
BRR	0.91	0.87	0.87	0.85		
OLS	1.00	0.95	0.92	0.91		
SGDR	0.80	0.72	0.71	0.69		
Tree	1.00	0.98	0.98	0.98		
Forest	1.00	1.00	1.00	1.00		

	MACCS®keys					
Method	Full	Var ß elect	Subset	Varßelect ßubset		
SVM®RBF	0.71	0.69	0.71		0.71	
SVM⊡Poly	0.60	0.66	0.62		0.66	
SVMalin	0.56	0.65	0.71		0.69	
BRR	0.91	0.87	0.89		0.88	
OLS	1.00	0.94	0.97		0.93	
SGDR	0.80	0.79	0.80		0.77	
Tree	1.00	0.98	0.98		0.97	
Forest	1.00	0.99	1.00		0.95	

Cosine angle statistics

Bold values all above 0.8

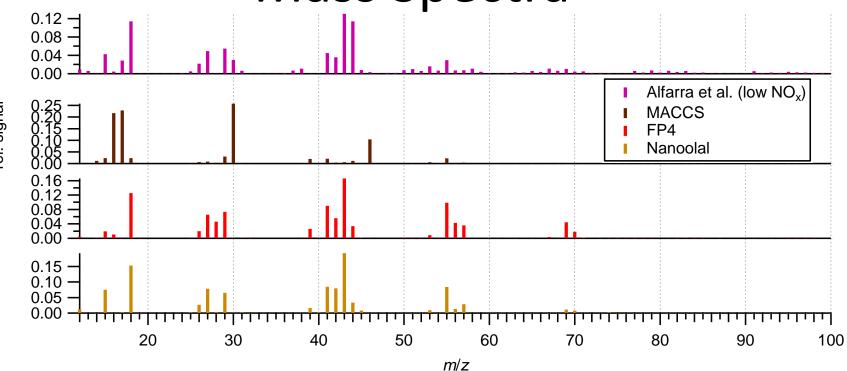
Training to a subset reveals more interesting dependencies, the same supervised methods still dominating performance.

'True' model performance

Test run on modelled data

- The AMS mass spectrum simulator was run on the model outputs of an explicit GECKO-A simulation of α-pinene oxidation
 - Valorso et al., doi: 10.5194/acp-11-6895-2011
 - This simulation produced a plausible mass concentration of SOA, albeit sensitive to the partitioning model
 - GECKO-A was used instead of the MCM because it uses predicted rather than prescribed reactions and can thus generate data on exotic molecules likely to be present in SOA
 - This feature is coming in MCM v4
- Data on ~55,000 particle-phase molecules were generated
- Predictions of AMS data were generated from a massweighted average of predictions and compared with previously published smog chamber spectra
 - Chhabra et al., doi: 10.5194/acp-11-8827-2011
 - Alfarra et al., doi:10.5194/acp-13-11769-2013

Mass Spectra

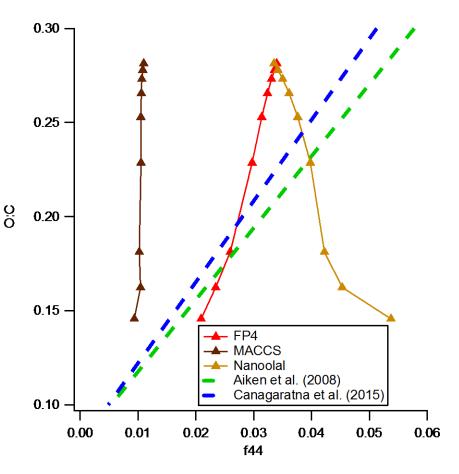


- Major peaks (41, 43, 55) predicted well by FP4 and Nanoolal – some differences in minor peaks
- MACCS completely off and looks more like ammonium nitrate – possibly over-trained?

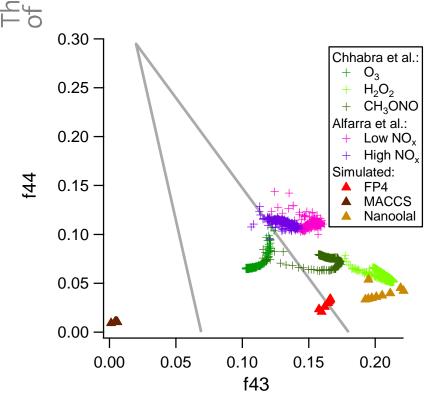
The University

O:C ratio vs f44

- GECKO-A predicts a monotonic increase in O:C over time
 - Values are low compared to typical atmospheric LV-OOA
- FP4 and Nanoolal give absolute f44s that compare well with published calibrations relative to O:C
 - The trend in f44 is reversed for Nanoolal, although the values are within the spread of calibration values used in the papers, so could still be plausible



f44 vs f43



- f43 values for FP4 and Nanoolal plausible compared to published studies
- f44 systematically low for all fingerprints, however this may be due to a lack of mechanisms such as autooxidation in the model
 - This is included in a newer version of GECKO-A (McVay et al. doi:10.5194/acp-16-2785-2016)
- Note the trajectories are complex and not monotonic for either the experimental or simulated data

Possible applications

- Enhance measurement-model comparisons beyond simple metrics such as mass concentration and O:C
- Assist with the development of explicit models of chemistry and partitioning
 - These can in turn inform parametric models such as VBS
- Allow predictions to be made when testing hypotheses, facilitating experiment design
- Testing the plausibility of proposed mechanisms and molecules when explaining observations
 - Note: Not a substitute for actual experimental evidence!

Further Work

- Publication of methodology (probably in GMD, which entails release of code)
- More training data (i.e. more analysis of standards)
- More testing of fingerprinting and training methods
- Application to HR data
- Looking at other modelled systems
 - Change precursors (e.g. anthropogenic)
 - Add/remove mechanisms, as per McVay et al. (2016)
 - Try with different models (e.g. MCM, different partitioning schemes)
- Comparing Lagrangian models with field data
- Inclusion into UManSysProp
 - http://umansysprop.seaes.manchester.ac.uk/

Questions

James Allan

james.allan@manchester.ac.uk

David Topping

david.topping@manchester.ac.uk

James Brooks

james.brooks-2@manchester.ac.uk