AMS/ACSM Tips, Tricks & FAQ’s

Bill Brooks, Phil Croteau, John Jayne,
Ed Fortner, Wade Robinson

AMS User’s Meeting 2016
10/22/16
Support Email

• Please send all support related questions to
 • CACC-Support@aerodyne.com
Leak Checking Tips
If the Airbeam (m/z 28,32,40) has a diff/closed ratio of < 2 you probably have a leak.
One can further get a clue as to where the leak is by carefully looking at your closed and difference Airbeam.

If the leak is in the PToF region, the difference Airbeam will be attenuated and the closed AB will not be changed too much from normal.

If it’s in the detection region, the difference AB will be about the same as normal, but the closed air signal will have an elevated background.
Using ToF as Leak Checker

- He or Ar are good choices.
- Using He may require a change in the timing window.
- Use controlled bursts of gas, don’t “flood” system.
- Depending on where the leak is, may need to wait several seconds for a response.
Doesn’t work as well here... But leaks here will cause a higher Backing Pressure

Consult Pump Currents, Lens and Backing Pressures to get a clue of where to look
Filament Installation
Install filaments such that they are as parallel as possible to the ion cage. Be EXTRA careful when installing that nothing is shorting. The ceramic washer is critical, as it isolates the filament from ground.
Critical ceramic washers
This side down!
Tuning Tip:

• Tune *both* Filaments *before* leaving for the field.
 • This can save time and possibly prevent one from having to vent while in the field. Also, sometimes a filament does not tune as well as one would like, so one may get a better tune with the second filament.
AMS Maintenance

• Always monitor pump performance
• Always monitor MD1 pressure (load/no load)
• Clean vacuum chamber surface
• Check for loose/missing connections/fasteners
• Clean cooling fan filters
• Check for stressed cables
• Dirt inside computer
• “Dirt” on computer HD (clean up and defrag)
What are the operating currents for all pumps?

<table>
<thead>
<tr>
<th></th>
<th>Gas Load Off (mA)</th>
<th>Gas Load On (mA)</th>
<th>Delta T* (Degrees C) (Closed/Open)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>~ 450</td>
<td>~ 850</td>
<td>9/13.3</td>
</tr>
<tr>
<td>P3</td>
<td>~ 250</td>
<td>~ 300</td>
<td>9/9.3</td>
</tr>
<tr>
<td>P4</td>
<td>~ 200</td>
<td>~ 250</td>
<td>6/5.9</td>
</tr>
<tr>
<td>P5</td>
<td>< 200</td>
<td>< 200</td>
<td>6.2/6.5</td>
</tr>
<tr>
<td>P6</td>
<td>~ 200</td>
<td>~ 200</td>
<td>9.6/9.6</td>
</tr>
</tbody>
</table>

*Delta T = Pump Temp – Ambient Temp
AMS Pressure Measurements

What is the backing pump pressure?
What is the lens pressure?
Corrosion

Rust

Salt corrosion
Inspect Shipping Container

Fork Lift Damage

Don’t leave instrument in the shipping container
Maintenance Issues, cont’d

Missing fasters
Maintenance Issues, cont’d

Aluminum dust

Missing fastener, chaffing metal
Maintenance Issues, cont’d

Dirty fan filter

Stressed cables
Dust Removal

Dust and Electronics are mortal enemies!
A Case Of Extreme Shipping Damage

Lesson: This really shows how hard your instrument could be jerked around in transport. Be careful when selecting transport. This crate was knocked over in transport.
V84/V304 Testing
Compares V301 System to V304 System
Data for all pumps is shown (85 cc/min gas load)

V304 running at 50% higher load than V301.
P3 also running ~50% higher.
Compares V301 and V304 mounted on AMS at P2 position as load is turned on.

V304 ultimately shut down due to 60C temperature limit.
Pump Testing Summary

V84

• Cooling is critical. Recommended to obtain Agilent’s cooling fan.

• Minor Replumbing will be necessary.

• Necessary adapter fittings are developed. (Agilent p/n 9699109M001 QS-T163)

• V84 will work with V84, V81, and V70 pump controllers.

• Several AMS systems are now running successfully with V84 Pumps.

V304

• V304 pump will not work on the AMS. Aerodyne will be able to obtain the V301 for the foreseeable future. Agilent will continue to supply OEM’s with the V301.
Insertable Ionizer and Moveable Vaporizer
Insertable Ionizer
Allow the removal of Ion Source without removing TOF

Moveable Vaporizer
Allow manipulation of vaporizer without breaking vacuum
Insertable Ionizer
Original Design
Insertable Ionizer
w/ Moveable Vaporizer
Spring - Controls Load Between Bellows and Lens Stack
7.5 lbs/in - <1/8" Compression

Spring - Loads Slide to Lens Stack
7.4 lbs/in - 1/8" Compression
ACSM Hardware
Thermocouple connections

Vaporizer power leads

Vaporizer mounting Screw

Always wait for vaporizer to cool before venting ACSM
Always wear gloves when working with any component that goes in high vacuum

Remove vaporizer power leads: Loosen nuts, don’t need to remove since connectors are hook shaped and will slip off

Disconnect thermocouple connectors: I usually hold socket (bottom) with gloved hand and use small needle nose pliers to pull pins

Remove mounting screw
Things to be careful about when mounting ACSM Vaporizer

- Make sure there’s a gap here between the vaporizer mount and the plate.
- Make sure the vaporizer isn’t tilted and touching the screw terminal on either side.
Move wires away from filament bodies by loosening screws on screw terminal using small phillips head screwdriver and tweezers or small pliers.

Remove nut and ceramic washer from top of filament using small nut driver delivered with ACSM.

Loosening screw in terminal

Screw terminals

Nuts and ceramic washers

Once nut is off filament can be removed. Under the filament there is a metal standoff – this should remain in place.

Replace with new filament.

Replace ceramic washer; note orientation.

Tighten down nut; ensure filament is installed parallel to ion cage as well as the standoff underneath the filament.

Reattach wires using screw terminals terminals

Check for continuity and shorts.

There should be continuity between all four filament screw terminals.

There should not be continuity between those terminals and any other screw terminal, ground, or the vaporizer.
How to fix valve that is turning in opposite direction than what is indicated in software

13-May 2016

1. On ACSM DAQ Main Panel select “Digital Line Configuration” from “Configuration” dropdown menu.
2. In “Digital Line Configuration Panel” switch the valve type of the valve that’s switching wrong.
3. In same panel click “Save and Close”
HP 300E on first stage

- 4-5°C Cooler under standard conditions (~85cm³/min load)

[Graph showing pump power and speed relationship with standard and no-load temperatures (44°C and 39°C) and an annotation: This will be a nice option for a little higher maximum ambient temperature if/when Pfeiffer starts to make available]
HP300H on final stage

- Pressure in MS Region With Valve Open
 - HP300H = 6.9×10^{-8} Torr (1 day of pumping)
 - HP300 = 5.8×10^{-8} Torr
 - No significant difference in MS signal with same single ion
Plug AC/DC converter (<10VDC) into same circuit as UPS, but not into UPS.
Connect to this to one of the Analog Input channels (3-6)
In workspace editor, Safe Shutdown box do the following:
 - Check “Active” checkbox
 - Set “Voltage threshold” to some value lower than the voltage of your converter
 - Set “Voltage channel” to the number of the AI channel you connected to
 - Set “Time to wait” to some value which is less than the time you expect your UPS to power the system
June 28, 2016
DOE ACSM with Pulser Flange Removed
Indicated screw was causing intermittent pulser short to ground.
TOF-ACSM Interlock is tripped.
Ionizer pressure reads just over 5e-4 mbar.
Most likely this is zero drift on the gauge.
Use a small wire to hold down zero button for >5s
Can I use Pieber effect to clean my vaporizer?

Atomizer with 1L NaNO₃(aq) → Dryer → ACSM with large 44 measured from NH₄NO₃, Tᵥap ~ 900°C

Set this up Friday night...
Can I use Pieber effect to clean my vaporizer?

Atomizer with 1L NaNO₃(aq) → Dryer → ACSM with large 44 measured from NH₄NO₃ T_vap ~ 900°C

Come back Monday Morning...
Can I use Pieber effect to clean my vaporizer?

Don’t do this.
Thank you!

Any Questions?