Deployment of a PM2.5-capable Aerosol Chemical Speciation Monitor in Nanjing, China

Yunjian Zhang¹, Lili Tang¹, Philip Croteau², Hongliang Zhang³, Ping Chen³, Wen Xu², Leah Williams², Manjula Canagaratna², John Jayne², Douglas Worsnop²

¹Jiangsu Environmental Monitoring Center and Nanjing University
²Aerodyne Research, Inc.
³Handix, LLC
Experiment Overview

• Sampling Site
 • Jiangsu Environmental Monitoring Center Nanjing, China
 • Urban, rooftop (~18m above ground level, ~15m from nearest busy road, ~50m from restaurants, houses, etc.)
 • October 21 – November 19, 2015

• Instruments
 • PM1 ACSM
 • PM2.5 ACSM
 • PM1 BAM
 • PM2.5 BAM
 • PM2.5 MARGA
Results overview – ACSM and BAM Time Series

PM2.5 System

PM1 System

Date and Time (Local)

Mass Loading /µg m⁻³

Org
NO₃
SO₄
NH₄
Chl
BAM
PM1
PM2.5
Results overview – ACSM and BAM Correlation

PM2.5

Slope = 0.91

BAM / μg m\(^{-3}\)

PM1

Slope = 0.78

BAM / μg m\(^{-3}\)
Results Overview – ACSM and MARGA Time Series

[Graph depicting time series of mass loading for different compounds (NO₃, SO₄, NH₄) measured by ACSM and MARGA from 10/21/2015 to 11/10/2015.]
Case Study

PM2.5 System

PM1 System

Date and Time (Local)
Case Study – Organic Mass Spectra Comparison
Case Study – Organic Mass Spectra Comparison

Fractional Intensity

m/z 91
Summary

• Developed a PM2.5-capable ACSM and successfully deployed in Nanjing, China

• Good agreement between total PM2.5 and ACSM NR-PM2.5

• MARGA gives strong correlations with PM2.5 ACSM
 • Absolute agreement mostly good, NO3 data is the exception

• Mass spectra can inform understanding of chemistry between 1 and 2.5 microns

• Next step: Comparative factor analysis of PM1 and PM2.5 ACSM