Emissions and chemistry of biomass burning: I⁻ ToF-CIMS during the FireLab 2016 campaign

Bin Yuan
NOAA Earth System Research Laboratory
CIRES, University of Colorado
Paul Scherrer Institute (PSI)
bin.yuan@psi.ch

Aerodyne User Meeting in Beijing
May, 2017
Outline

- FireLab 2016 campaign
- Iodide CIMS results
- Inter-comparison with other instruments
FireLab 2016

Wind Tunnel:
- Mini Chamber:
 - HR-AMS
 - SP-HR-AMS
 - CAPS, PASS
 - CRD-PAS, SP2
 - CO, CO2, O3
 - SP2, CLAP, POPS
 - PAX, SMPS
 - WSOC-PILS
- Mixing Drum for BC and BrC:

Control Room:
- H3O+CIMS
- I-CIMS
- PAM

Viewing Room:
- PILS-ESI
- Ny, NO, sampler

Samplers:
- Gas: GCxGC-ToF-MS (EI)
- Particle: GCxGC-ToF-MS (VUV)
- DI-MS, PILS

Room Burns:
- BrC-PILS
- BBCEAS
- CRDPAS
- NEPH

Aerodyne Lab:
- LToF-AMS
- PTR-MS
- ECHAMP
- PAM
- CO, CO2, NOx, HCHO, CH4, C2H6, C3H8, ..
Iodide ToF-CIMS

\[\text{I}^- + X \rightarrow \text{IX}^- \]

Inorganic acids: HONO, HNCO, HNO$_3$, HCl

Organic species:
- Oxygenated VOCs (≥2 O)
- Organic nitrates (and nitro compounds)
20 m ½” Teflon Permeation Tube

DCOOH

Capillary

430 mbar

100-400 cc/min

~100 L/min

Zero Air

MFC ~ 4 L/min

Bubbler

FM

PC

Pump

Pump

CIMS

MIT-mini chamber

Flow legend

Common

Smoke

BG

~ 1 L/min
Engelmann Spruce

Fire25: Canopy
Mainly Flaming
MCE=0.953
med-N fuel

Fire26: Duff
Smoldering
MCE=0.818
high-N fuel
<table>
<thead>
<tr>
<th>No.</th>
<th>Fire25: Canopy</th>
<th>Fire26: Duff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M173 ICH2O2</td>
<td>Formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M237 ICH6H6O2</td>
</tr>
<tr>
<td>2</td>
<td>M237 IC6H6O2</td>
<td>Catechol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M173 ICH2O2</td>
</tr>
<tr>
<td>3</td>
<td>M174 IHNO2</td>
<td>HONO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M251 IC7H8O2</td>
</tr>
<tr>
<td>4</td>
<td>M217 IC3H6O3</td>
<td>Lactic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M253 IC6H6O3</td>
</tr>
<tr>
<td>5</td>
<td>M251 IC7H8O2</td>
<td>Guaiacol/Methylcatechol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M265 IC8H10O2</td>
</tr>
<tr>
<td>6</td>
<td>M253 IC6H6O3</td>
<td>Trihydroxylbenzene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M259 IC5H8O4</td>
</tr>
<tr>
<td>7</td>
<td>M259 IC5H8O4</td>
<td>Glutaric acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M252 C6H7INO2</td>
</tr>
<tr>
<td>8</td>
<td>M243 IC5H8O3</td>
<td>Levulinic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M187 IC2H4O2</td>
</tr>
<tr>
<td>9</td>
<td>M203 IC2H4O3</td>
<td>Glycolic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M271 IC6H8O4</td>
</tr>
<tr>
<td>10</td>
<td>M263 IC8H8O2</td>
<td>Phenylacetic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M219 C3H8O3</td>
</tr>
<tr>
<td>11</td>
<td>M229 IC4H6O3</td>
<td>Ketobutyric acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M222 C5H5INO</td>
</tr>
<tr>
<td>12</td>
<td>M187 IC2H4O2</td>
<td>Acetic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M229 IC4H6O3</td>
</tr>
<tr>
<td>13</td>
<td>M241 IC5H6O3</td>
<td>Dihydro-furancarboxylic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M243 IC5H8O3</td>
</tr>
<tr>
<td>14</td>
<td>M271 IC6H8O4</td>
<td>Dimethyl maleate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M203 IC2H4O3</td>
</tr>
<tr>
<td>15</td>
<td>M265 IC8H10O2</td>
<td>Dimethoxybenzene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M273 IC6H10O4</td>
</tr>
<tr>
<td>16</td>
<td>M249 IC7H6O2</td>
<td>Benzoic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M279 IC8H8O3</td>
</tr>
<tr>
<td>17</td>
<td>M219 IC3H8O3</td>
<td>Glycerol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M241 IC5H6O3</td>
</tr>
<tr>
<td>18</td>
<td>M227 IC4H4O3</td>
<td>Hydroxy-furanone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M251 IC8H12O</td>
</tr>
<tr>
<td>19</td>
<td>M215 IC3H4O3</td>
<td>Pyruvic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M92 C2H4O4</td>
</tr>
<tr>
<td>20</td>
<td>M239 IC5H4O3</td>
<td>Furoic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M154 IHCN</td>
</tr>
</tbody>
</table>

Aromatics **Furans** **Simple organic acids** **N-Containing** **Inorganic**
Fire26: Engelmann Spruce - Duff

MIT Mini-Chamber

- **Light on**
 - Catechol
 - Trihydroxylbenzene
 - Tetrahydroxylbenzene

- **Light off**
 - Glycolic acid
 - Succinic acid
 - NO$_3^-$ fragment
 - Nitrobenzene

Graph showing signal changes over time with peaks indicating the release of various compounds during light on and light off periods.
Fire26: Engelmann Spruce - Duff
MIT Mini-Chamber

Loss

Formation

Large flux of secondary formation for oxidized species!

----->Strong SOA formation??

log(signal)

mass defect

m/z

Odd Mass, Loss

Odd Mass, Formation

Even Mass, Loss

Even Mass, Formation
Oxidation Flow Reactor (OFR)

- Ages smoke in real-time
- OH exposure is fixed
- Investigation of smoke chemistry as a function of burn stage (e.g., flaming vs. smoldering)

OFR OH Generation

\[
\begin{align*}
H_2O + h\nu_{185} & \rightarrow OH + H \\
O_2 & \rightarrow O_3 \\
H + O_2 & \rightarrow HO_2 \\
O_3 + h\nu_{254} & \rightarrow O(1D) + O_2 \\
O_2 + h\nu_{185} & \rightarrow 2O(3P) \\
O(1D) + H_2O & \rightarrow 2OH
\end{align*}
\]

Leaded by Matt Coggon
Inter-comparison between H$_3$O$^+$ CIMS (i.e. PTR-TOF) and I$^-$ CIMS

- High variability burn
- Good agreement
Inter-comparison for Fire 25
I-CIMS vs $\text{H}_3\text{O}^+\text{CIMS}$

- multiple compounds per mass
- low sensitivity of either instrument
• Three instruments measure different compounds/classes with some overlap
Summary

- VOC emissions from biomass burning depend on the types of fuels, combustion efficiency and fuel compositions;

- I- CIMS indicates a large flux of oxygenated VOCs from the aging of biomass burning plumes;

- Different VOC instruments may be measuring different classes of compounds;
Acknowledgement

NOAA ESRL CSD
Carsten Warneke, Jim Roberts, Matt Coggon, Abby Koss, Joost de Gouw

University of Colorado Boulder
Jordan Krechmer, Hyungu Kang, Harald Stark, Jose Jimenez

Massachusetts Institute of Technology
Christopher Lim, Jesse Kroll

University of Montana
Vanessa Salimovic, Robert Yokelson