

The Aerosol Chemical Monitor Calibration Center (ACMCC): A facility for the quality control of ACTRIS Aerosol Chemical Speciation Monitor (ACSM) measurements

acmcc@lsce.ipsl.fr

Olivier FAVEZ, Evelyn FRENEY, Valerie GROS, Francois TRUONG, Tanguy AMODEO

AMS / CIMS user's meeting Beijing, 7-11 May 2017

Atmospheric processes relevant to ACTRIS:

From research programs toward a multi-decade research infrastructure:

Coordinated service provision:

ACTRIS Services for users

- · Data and data-product services
- · Physical Access services
- Innovation and research-support services
- · Training services

Access modes for the ACTRIS

- Physical access
- · Data access/virtual access

ACTRIS structure:

Central facilities

ACTRIS current Central Facilities / Expertise centers:

Central facility for in situ aerosol measurements

3 distinct nodes:

- WCCAP: particle counters, aerosol size distribution, optical properties
- ERLAP: off-line measurements of major chemical species (EC-OC)
- ACMCC: on-line aerosol chemistry (ACSM)

A dense ACSM networks within ACTRIS

Bressi et al., in prep.

ACMCC presentation

✓ Collaboration between different institutes

Laboratoire des Sciences du Climat et de l'Environnement

LSCE (UMR 8212)

✓ Located 25km South-West of Paris, France

✓ Co-located with the SIRTA ACTRIS monitoring station

TEOM - FDMS EC-OC Sunset Field Inst. + PILS-IC

Nephelometers + Aethalometers

Filter chemistry NO, NO2, O3

PTR-MS & GC-FID

In situ real-time PM1 chemical speciation at SIRTA

Aerosol chemical speciation monitor (ACSM)

Non-refractory chemical species (NR- PM_1):

Organic aerosol (OA), nitrate (NO₃), sulfate (SO₄), ammonium (NH₄), chloride (Chl)

7-wavelength Aethalometer (AE31 then AE33)

Black Carbon (BC): Fossil fuel BC (BC $_{\rm ff}$) & Wood burning BC (BC $_{\rm wb}$), calculated from

Aethalometer model

10 European countries participating

15 aerosol mass spect. intercompared

✓ robust measurements of the NR-PM1 total mass and its major components.

- © A good agreement with external data
- A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments

- A good agreement with external data
- © A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments
- © Relativley low uncertainties for the major species

- © A good agreement with external data
- A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments
- © Relativley low uncertainties for the major species
- **®** RIE NH4 and SO4 calibrations might be improved

- A good agreement with external data
- A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments
- © Relativley low uncertainties for the major species
- **®** RIE NH4 and SO4 calibrations might be improved
- ☼ Significant f44 variability from one ACSM to another

- © A good agreement with external data
- A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments
- © Relativley low uncertainties for the major species
- **®** RIE NH4 and SO4 calibrations might be improved
- ☼ Significant f44 variability from one ACSM to another

- A good agreement with external data
- A high stability of the instruments
- © Satisfactory Z-score analysis results for all the tested instruments
- © Relativley low uncertainties for the major species
- **®** RIE NH4 and SO4 calibrations might be improved
- Significant *f44* variability (Need to be carefull when interpreting oxidation states)
- © But good agreement between Source Apportionment results between from the 13 ACSMs

ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

V. Crenn¹, J. Sciare^{1,2}, P. L. Croteau³, S. Verlhac⁴, R. Fröhlich⁵, C. A. Belis⁶, W. Aas⁷, M. Äijälä⁸, A. Alastuev⁹, B. Artiñano¹⁰, D. Baisnée¹, N. Bonnaire¹, M. Bressi⁶, M. Canagaratna³, F. Canonaco⁵, C. Carbone¹¹, F. Cavalli⁶, E. Coz¹⁰, M. J. Cubison¹², J. K. Esser-Gietl¹³, D. C. Green¹⁴, V. Gros¹, L. Heikkinen⁸, H. Herrmann¹⁵, C. Lunder⁷, M. C. Minguillón⁹, G. Močnik¹⁶, C. D. O'Dowd¹⁷, J. Ovadnevaite¹⁷, J.-E. Petit^{1,4}, E. Petralia¹⁸, L. Poulain¹⁵, M. Priestman¹⁴, V. Riffault¹⁹, A. Ripoll⁹, R. Sarda-Estève¹, J. G. Slowik⁶, A. Setyan¹⁹, A. Wiedensohler¹⁵, U. Baltensperger⁵, A. S. H. Prévôt⁵, J. T. Javne³, and O. Favez⁴

ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

R. Fröhlich¹, V. Crenn², A. Setvan³, C. A. Belis⁴, F. Canonaco¹, O. Favez⁵, V. Riffault³, J. G. Slowik¹, W. Aas⁶, M. Aijälä⁷, A. Alastuey⁸, B. Artiñano⁹, N. Bonnaire², C. Bozzetti¹, M. Bressi⁴, C. Carbone¹⁰, E. Coz⁹, P. L. Croteau¹¹, M. J. Cubison¹², J. K. Esser-Gietl¹³, D. C. Green¹⁴, V. Gros², L. Heikkinen⁷, H. Herrmann¹⁵, J. T. Javne¹¹, C. R. Lunder⁶, M. C. Minguillón⁸, G. Močnik¹⁶, C. D. O'Dowd¹⁷, J. Ovadnevaite¹⁷, E. Petralia¹⁸, L. Poulain¹⁵, M. Priestman¹⁴, A. Ripoll⁸, R. Sarda-Estève², A. Wiedensohler¹⁵, U. Baltensperger¹, J. Sciare^{2,19}, and A. S. H. Prévôt¹

Atmos. Meas. Tech., 8, 5063-5087, 2015 www.atmos-meas-tech.net/8/5063/2015/ doi:10.5194/amt-8-5063-2015 © Author(s) 2015. CC Attribution 3.0 License.

Atmos. Meas. Tech., 8, 2555–2576, 2015 Measure www.atmos-meas-tech.net/8/2555/2015/ Techn doi:10.5194/amt-8-2555-2015 © Author(s) 2015. CC Attribution 3.0 License.

Organization:

- 1. Three to four days pre-calibration intercomparison.
- 2. Calibration using single and mixed inorganic solutions
- 3. Three to four days post-calibration intercomparison (extended for ToF-ACSM).

Site	Q-ACSM T	oF-ACSM
Hohenpeissenberg		
Hyytiala		
Cyprus		
Melpitz		
Finokalia		
London		
Bologna		
Madrid		
Vavihill		
SMEAR		
Zurich		
JFJ		
Bucharest		
Barcelona		
PUY		
SIRTA		
CapCorse		
Tartu		
ToFwerk		

Optimizing the standard calibration procedure using CPMA:

Like normal ACSM Calibration Setup but with CPMA after DMA CPMA selects particles by Mass/Particle Combined with DMA, this eliminates Q2s

Optimizing the standard calibration procedure using CPMA <u>and</u> <u>calibrating in « full scan mode »</u>

Optimizing the standard calibration procedure using CPMA <u>and</u> calibrating in « full scan mode »____

Optimizing the standard calibration procedure using CPMA <u>and</u> <u>calibrating in « full scan mode »:</u>

Also allowing to check if m/z44 observed during NH4NO3 IE calibration

Optimizing the standard calibration procedure using CPMA and calibrating in « full scan mode »:

Also allowing to check if m/z44 observed during NH4NO3 IE calibration

Comparison with SIRTA reference instrument

Exemple 1:

BEFORE

Ambient
measurements
+ 1 ToF-ACSM
4th to 7th of March

Calibrations

7th to 10th of March

Ambient measurements

11th to 14th of March

12

Mass concentration (µg m⁻³) SIRTA

Comparison with SIRTA reference instrument

Exemple 1:

AFTER

15 Q-ACSM + 1 ToF-ACSM

Ambient measurements
4th to 7th of March

Calibrations

7th to 10th of March

Ambient measurements

11th to 14th of March

11-14 March

a = 0.78 r² = 0.96

Instrument performance evaluated against the Median using the Z-score method (after checks and calibrations)

(Preliminary) Conclusions on Q-ACSM 2016 campaign:

- The ACSM is still a research instrument on which we have to keep performing research activities
- The data acquired during the ACMCC intercomparison exercises will be used to further determine robust uncertainties for these instruments
- Calibrations in acquisition mode significantly improved the accuracy of SO4 measurements, and allows for tracking « Pieber effects »
- Tunning of ACSM (AMS) Analog Input used for CPC reading has to be checked

Ambient pAM experiments

6 Q-ACSM measurements

1 HR-AMS

Ambient pAM experiments

24th to 27th of March

27th of March to 18th of April

Ability of the PAM system to produce aerosols with a very wide range of oxidation states

Other / future activities at the ACMCC

Role:

- Calibration facility for <u>various on-line in-situ</u> chemical analyzers (ACSM, but also MARGA, Sunset Field Inst., ...);
- Intercomparison studies, training, exchange of knowledge, best-practices, ... at the ACMCC;
- Perform quality control audits and provide assistance directly at ACTRIS stations

Users: Research institutions, and (French) regional monitoring networks (AASQA)

Thank you

Any question?

