Inter-comparisons between HR-ToF-AMS and ACSM

Yele Sun
Institute of Atmospheric Physics, CAS

AMS/ACSM Measurements in China (July 2016)

Urban
N=22

Non-urban
N=13
ACTRIS ACSM Inter-comparisons

Reproducibility expanded uncertainties of Q-ACSM concentration measurements (%)

Crenn et al., AMT, 2015

Tower Measurements

- **PM$_2.5$ Composition:**
 - Organics, sulfate, nitrate, ammonium, and chloride
 - Time res.: 5min

- **Gaseous species:**
 - CO, SO$_2$, O$_3$
 - Time res.: 1min

- **CAPS + AE33:**
 - Particle ext (1 s)
 - BC (1 min)

- **SMPS:**
 - Particle number size distributions (5 min)
ACSM vs. HR-ToF-AMS

Same Inlet
Default RIEs except ammonium

ACSM vs. HR-ToF-AMS

Same Inlet
Default RIEs except ammonium
ACSM vs. HR-ToF-AMS

NO₃

- $R^2 = 0.99$
- Slope = 1.24

NH₄

- $R^2 = 0.99$
- Slope = 1.2

Chl

- $R^2 = 0.97$
- Slope = 0.61

Total

- $R^2 = 0.99$
- Slope = 0.99
AMS vs. ACSM: Mass Spectra

Large overestimation of m/z 44 during clean periods

OA Factors: ACSM vs. HR-ToF-AMS
OA Factors: ACSM vs. HR-ToF-AMS

ACSM: Filament 2

R² = 0.97 (ACSM vs. AMS)
Conclusions

- ACSM NO$_3$ vs. SO$_4$
- ACSM f44\rightarrowtriangle plot\rightarrowO/C
- ACSM f60
- PMF ACSM OA: Split of POA factors
- ME2: AMS spectra as constrains
Field characterization of the PM$_{2.5}$ Aerosol Chemical Speciation Monitor: insights into the composition, sources and processes of fine particles in Eastern China

Yanqiong Zhang1,2, Lili Tang1,2, Philip L. Carbone3, Olivier Favez1, Yule Sun1, Jingkun R. Cheng1, Zhong Wang1, Florian Coudert1, Alexandre Aumont1, Haifang Zhang1, Jun Xu4, Adam S. J. Paton2, Xia L. Song2, Douglas R. Worsnop2

PM$_{1}$ ACSM vs. PM$_{2.5}$ ACSM