Overview of CIMS Applications

Doug Worsnop ARI/PKU AMS/CIMS Users Meeting Tuesday, 9 May

Direct Observations of Atmospheric Aerosol Nucleation

Markku Kulmala,¹* Jenni Kontkanen,¹ Heikki Junninen,¹ Katrianne Lehtipalo,¹ Hanna E. Manninen,¹ Tuomo Nieminen,^{1,14} Tuukka Petäjä,¹ Mikko Sipilä,¹ Siegfried Schobesberger,¹ Pekka Rantala,¹ Alessandro Franchin,¹ Tuija Jokinen,¹ Emma Järvinen,¹ Mikko Äijälä,¹ Juha Kangasluoma,¹ Jani Hakala,¹ Pasi P. Aalto,¹ Pauli Paasonen,¹ Jyri Mikkilä,² Joonas Vanhanen,² Juho Aalto,³ Hannele Hakola,⁴ Ulla Makkonen,⁴ Taina Ruuskanen,¹ Roy L. Mauldin III,^{1,5} Jonathan Duplissy,¹ Hanna Vehkamäki,¹ Jaana Bäck,⁶ Aki Kortelainen,⁷ Ilona Riipinen,⁸ Theo Kurtén,^{1,9} Murray V. Johnston,¹⁰ James N. Smith,^{7,11} Mikael Ehn,^{1,12} Thomas F. Mentel,¹² Kari E. J. Lehtinen,^{4,7} Ari Laaksonen,^{4,7} Veli-Matti Kerminen,¹ Douglas R. Worsnop^{1,4,7,13}

10⁻⁶ 1000000 100000 10⁻⁷ 10000 dN/dlogDp [cm⁻³] Diameter [m] 1000 10⁻⁸ 100 10⁻⁹ 10 03/28 03/29 03/30 03/31 04/01 03/27

SCIENCE VOL 339 22 FEBRUARY 2013 943

ш Π Small clusters and Growing **Critical size** molecules clusters for clustering No direct connection to NPF · Sulphuric acid and amines · Organics start to dominate · Very slow growth Stabilizing organic compounds Rapidly growing (~2 nm/h) Slowly growing (<1 nm/h) Nano-Köhler • Determines J₃ Determines J₁₅ Key processes: Gas-phase reactions, Activation of clusters for **Cluster stabilization** cluster formation/evaporation enhanced growth 900 ... 2000 amu 300 ... 500 amu 1.1 ... 1.3 nm 1.5 ... 1.9 nm

Kulmala et al., 2013, Science

A high-resolution mass spectrometer to measure atmospheric ion composition

H. Junninen¹, M. Ehn¹, T. Petäjä¹, L. Luosujärvi², T. Kotiaho^{2,3}, R. Kostiainen³, U. Rohner⁴, M. Gonin⁴, K. Fuhrer⁴, M. Kulmala¹, and D. R. Worsnop^{1,5}

Atmospheric (pressure) lons Sample Air Pump 3-stage turbo pump _____ **API-ToFMS** ToF region (Tofwerk) Mikael Ehn, Heikki Junninen

Atmospheric Measuremen Techniques Discussions

Atmos. Meas. Tech. Discuss., 3, 599-636, 2010

Negative ion spectra from Hyytiälä

Negative ion spectra from Hyytiälä

lons in Air: few minutes

The short life of an ion

CIMS: High NO_3^- fraction of a second lons in Air: Low NO_3^- few minutes

Negative ion spectra from Hyytiälä

CI-APi-TOF for neutral compound measurements

-APi samples 0.8 lpm

Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

M. Ehn¹, E. Kleist², H. Junninen³, T. Petäjä³, G. Lönn³, S. Schobesberger³, M. Dal Maso³, A. Trimborn^{1,4}, M. Kulmala³, D. R. Worsnop^{3,5}, A. Wahner¹, J. Wildt², and Th. F. Mentel¹

2

doi:10.1038/nature13032

A large source of low-volatility secondary organic aerosol

Mikael Ehn^{1,2}, Joel A. Thornton^{2,3}, Einhard Kleist⁴, Mikko Sipilä², Heikki Junninen², Iida Pullinen¹, Monika Springer¹, Florian Rubach¹, Ralf Tillmann¹, Ben Lee³, Felipe Lopez–Hilfiker³, Stefanie Andres¹, Ismail–Hakki Acir¹, Matti Rissanen², Tuija Jokinen^{2,5}, Siegfried Schobesberger², Juha Kangasluoma², Jenni Kontkanen², Tuomo Nieminen^{2,6}, Theo Kurtén⁷, Lasse B. Nielsen⁸, Solvejg Jørgensen⁸, Henrik G. Kjaergaard⁸, Manjula Canagaratna⁹, Miikka Dal Maso¹⁰, Torsten Berndt⁵, Tuukka Petäjä², Andreas Wahner¹, Veli–Matti Kerminen², Markku Kulmala², Douglas R. Worsnop^{2,9}, Jürgen Wildt⁴ & Thomas F. Mentel¹

Auto-oxidation

Ehn et al, Nature, 2014

also see Crounse et al, JPC Letters, 2013

addition of (NH4)2SO4 seed

A large source of low-volatility secondary organic aerosol

LETTER

Mikael Ehn^{1,2}, Joel A. Thornton^{2,3}, Einhard Kleist⁴, Mikko Sipilä², Heikki Junninen², Iida Pullinen¹, Monika Springer¹, Florian Rubach¹, Ralf Tillmann¹, Ben Lee³, Felipe Lopez–Hilfiker³, Stefanie Andres¹, Ismail–Hakki Acir¹, Matti Rissanen², Tutja lokinen^{2,5}, Stegfried Schobesberger², Juha Kangasluoma², Jenni Kontkanen², Tuomo Nieminen^{2,6}, Theo Kurtán², Lasse B. Nielsen⁸, Solvejg Jørgensen⁸, Henrik G. Kjærgaard⁸, Manjula Canagaratna⁹, Milkka Dal Maso¹⁰, Torsten Berndt⁵, Tuukka Petäjä², Andreas Wahner¹, Veli-Matti Kerminen², Markku Kulmala², Douglas R. Worsnop^{2,9}, Jürgen Wildt⁴

CLOUD at the CERN Proton Synchrotron, July 2011

Kirkby, Curtius, Carslaw, Baltensperger, Kulmala, *(Worsnop, Donahue)*

÷

the CLOUD KIDS

APi-TOF data confirm: Organics participate in cluster formation from the very beginning

Riccobono et al., Sceince, 2014

Ionization Techniques

Electron Impact ("hard") $R + e^- \rightarrow R^+ + 2e^- \rightarrow R_i^+$ universal Chemical Ionization ("soft") proton transfer $R + H3O + \rightarrow RH + + H2O$ hydrocarbons PTRMS (carboxylic) acids RCOOH + C2H4O- \rightarrow RCOO- + C2H5O2 Acetate clustering $R + I \rightarrow R.I$ polarized species lodide $R + NO3 \rightarrow R.NO3$ Nitrate highly oxidized organics $[H2SO4 + NO3 \rightarrow HSO4 + HNO3]$

m/z

PAM Reactor Components

- UV lamps: λ = 185 and 254 nm wavelength
- Humidifier, Autovalve, RH/T, Photodiode
- Electronics box with ballasts and control board
- Control software

Result 2b – Proof of Concept isoprene + "high OH"

36 ppb isoprene + "high" OH, low NOx comparison with Krechmer et al.

Hyytiälä NO₃- ToF-CIMS PMF Mass Spectral Factors

a-pinene + O3, OH, NO (NO3)

→ ном

"highly oxidized multifunctional organics"

Yan et al, ACPD, 2016