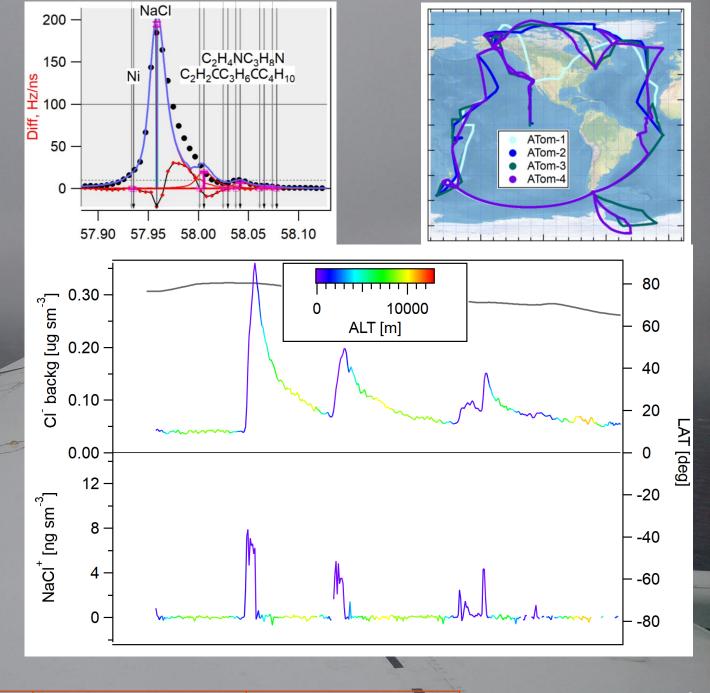


Finding Shiny Nuggets In The "Grass": Quantification of Halogen Species in the HR-AMS

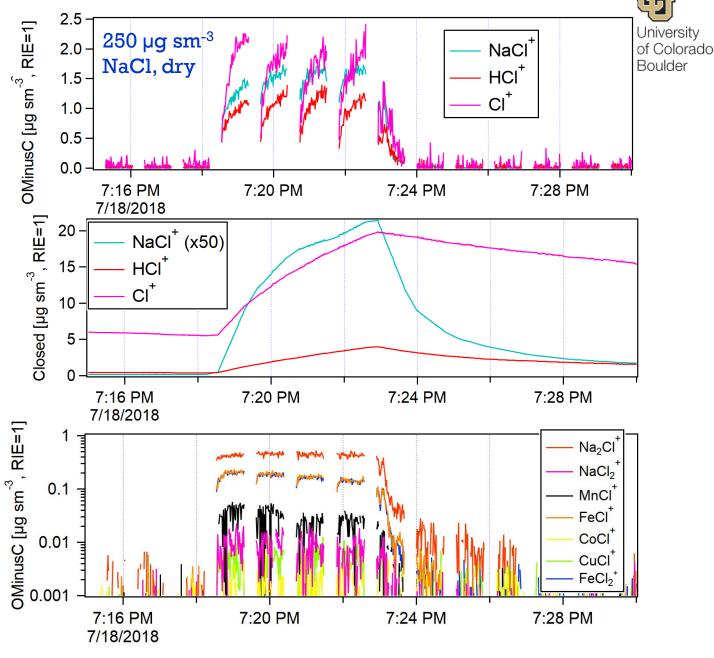
- Br, BrO, BrO₃
- I, IO, IO₃

<u>P Campuzano Jost</u>^{1,2}, BA Nault^{1,2}, Ted Koenig¹, Hongyu Guo^{1,2}, JC Schroder^{1,2}, DA Day^{1,2}, JL Jimenez^{1,2}, R Volkamer¹, K Froyd³, D Murphy³, A Kupc³, C Williamson³, C Brock³

¹Dept. of Chemistry & ²CIRES, University of Colorado-Boulder; ³NOAA ESRL

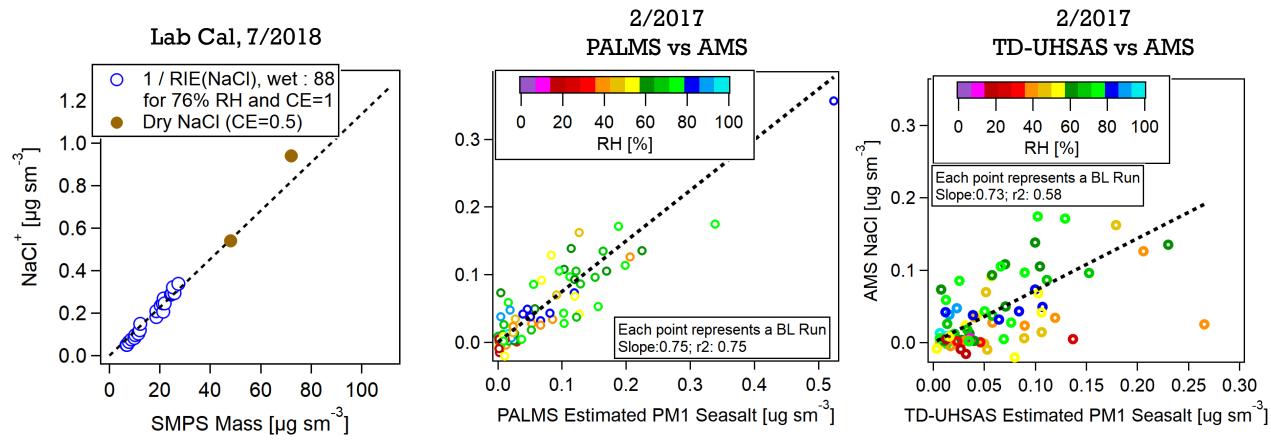

18th AMS Users Meeting St Louis, MO, September 10th, 2018

Seasalt (NaCl)


- Refractory species, mostly leads to a slow increase in chlorine background in the AMS
- Ovadnevaite et al, 2012 showed that NaCl⁺ ions are produced as well, with little background and fast response times.
- RIE is very low (1/RIE_{Na}57_{C1}=51)
- During ATom, we saw both NaCl⁺ (diff) as well as Cl (closed) increase in the MBL
- We also saw an "interference" of NaCl on AMS chloride

Seasalt Calibrations

- Both dry (18% RH) and wet (~80% RH)
- Plenty of chloride ions present as well in OMinusC and Closed, but NaCl⁺ is the least "sticky", hence preferred
- Vaporizer chemistry is important (Drewnick et al, 2015) and independent of phase
- Na₂Cl at m/z 81 and 83 is also fairly important (HSO₃ and perchlorate interference, Schmale et al, 2013)

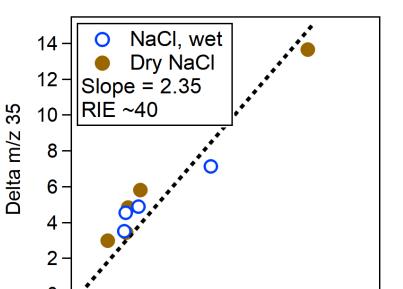


NaCl ClO₃/ClO₄ Iodine Bromine

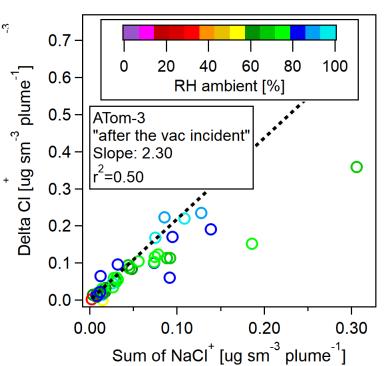
NaCl Calibration and field comparison

ATom-2

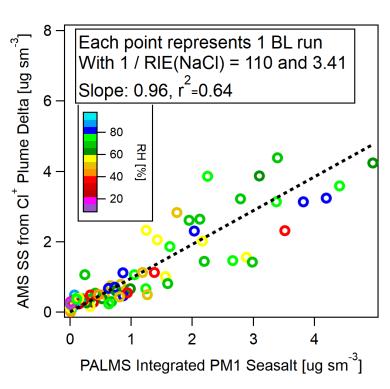
ATom-2


- Agreement in the field data between PALMS and AMS is good, but suggest that the RIE for ATom-2 was higher
- Always calibrate as soon as possible!
- No evidence of CE ever being less than 1 in the field from PALMS comparison
- TD-UHSAS comparison ok in principle, but mass calculation still needs more work

Cl Closed (m/z 35) Cal and field data



Lab Cal, 7/2018

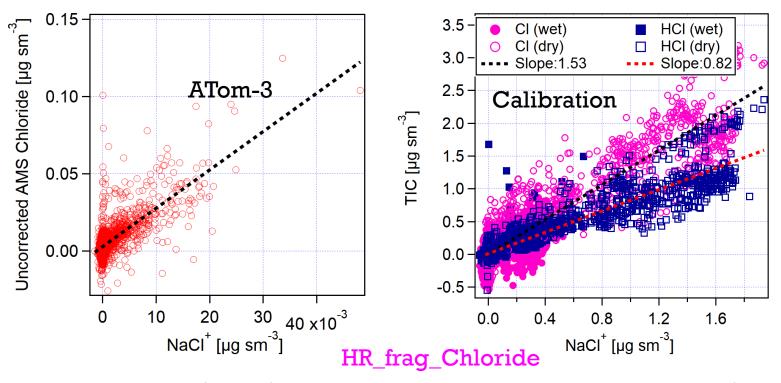


2

ATom-2 2/2017 AMS vs AMS

ATom-2 2/2017 PALMS vs AMS

- Highly correlated behavior, PALMS comparison a little bit worse ($r^2=0.64$ vs 0.75)
- Almost no interferences at m/z 35, so this can be used to quantify seasalt with ACSM/mini-AMS/ cToFs as well (basically cal 58 vs 35)

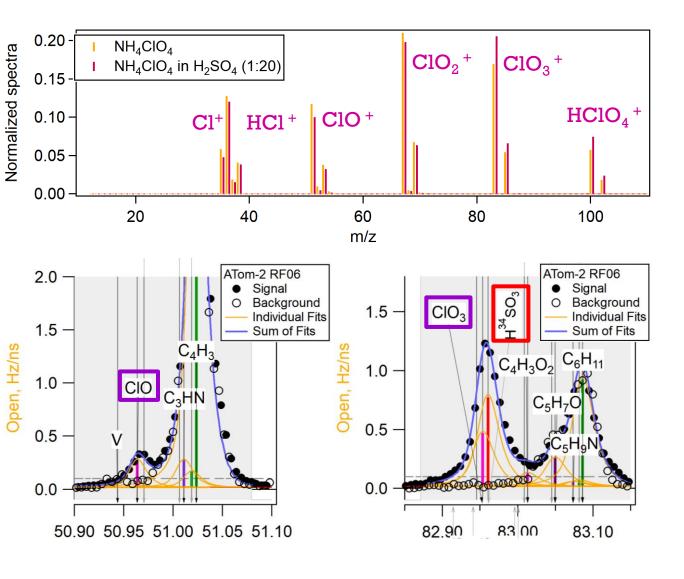

Total NaCl[†] per "plume"

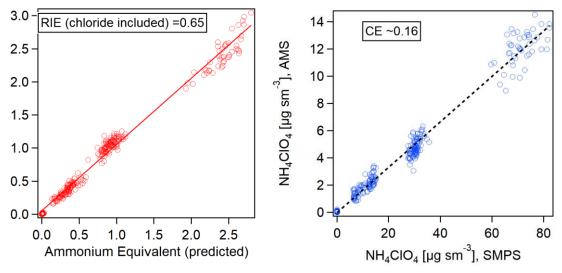
Chloride Corrections/Quantification

I feel strongly that AMS Chl should remain NR PM₁ Chloride (so NH₄Cl and organic chloride)

=> Need to correct for the SS contributions to Cl and HCl (and remove NaCl from familyCl!)

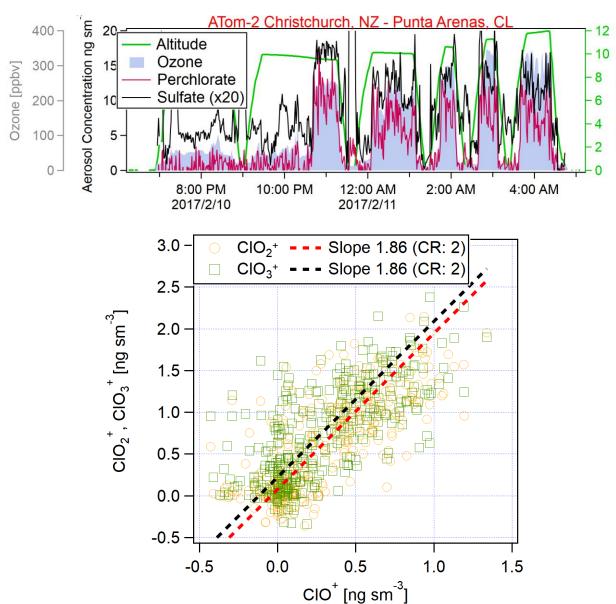
Correction factors change between AToms, but seem stable during each deployment

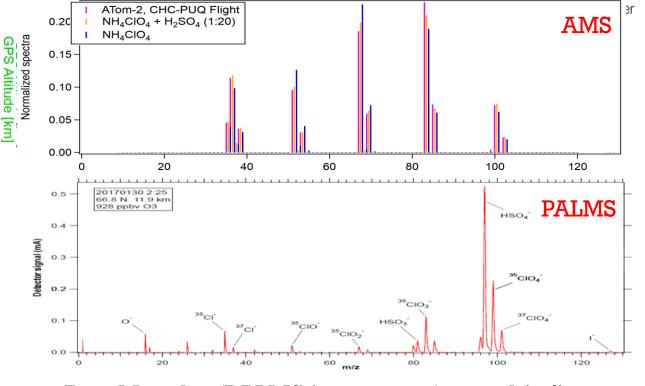

Implemented in the HR Frag table as illustrated below, happy to explain offline or tomorrow


HR_frag_seasalt

20	CI	{CI},-HR_frag_seasalt[{CI}],HuCIFrag*HR_frag_nitrate	CINaCIFrag*HR_frag_seasalt[{NaCI}]		
21	HCI	$\label{eq:hcl} $$ $\{HCl\}_{,-}HR_{grag_seasalt[\{HCl\}]_{,-}}HuHClFrag^*HR_{grag_nitrate} $$$	CINaCIFrag*HR_frag_seasalt[{NaCI}]		
22	j37Cl	0.3198*HR_frag_chloride[{CI}]	0.3198*HR_frag_seasalt[{CI}]		
23	Hj37Cl	0.3198*HR_frag_chloride[{HCI}]	0.3198*HR_frag_seasalt[{HCI}]		

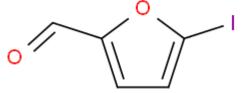
Another chlorine species: Perchlorate (ClO₄)





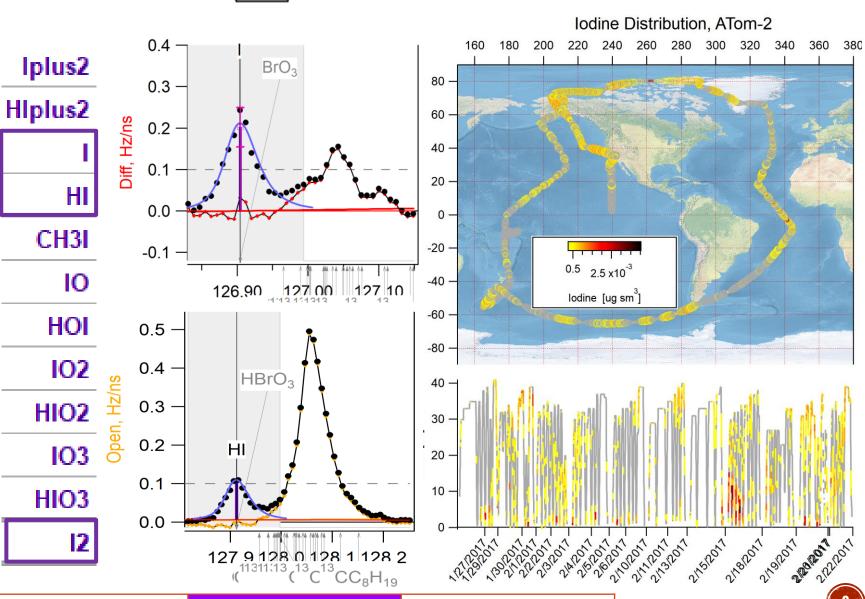
- High sensitivity
- Low CE for the neutral compound, worse than sulfate
- Fragmentation depends on acidity/CE, but less than sulfate
- Cl⁺/HCl⁺ contribution needs to be taken into account (and removed from Chl)
- Na₂³⁷Cl⁺ interference with ClO₃ ⁺
- Sulfate interferences for ClO₂ + and ClO₃ +

Detection of Perchlorate during ATom



- Dan Murphy (PALMS instrument) saw this first during ATom-2 on the Southern Ocean flight
- We had previously calibrated for this (long story)
- Ion ratio analysis confirms proper quantification
- We sampled plenty (1-4 pptv) of perchlorate in the lower polar stratosphere during all AToms

Iodine



Compounds we calibrated for:

 NH_4I , NH_4IO , NH_4IO_3 , $C_5H_3IO_2$ up to m/z 450

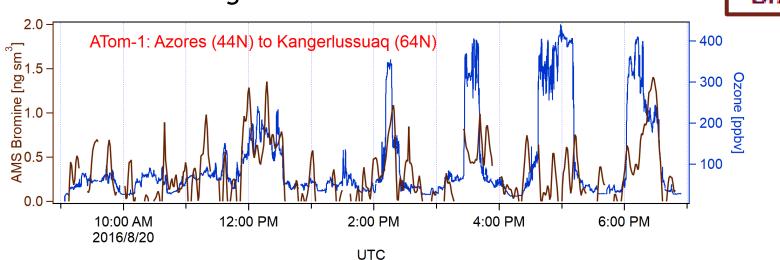
 RIE was derived from ammonium balance

RIE = 0.72

Quantifying Bromine

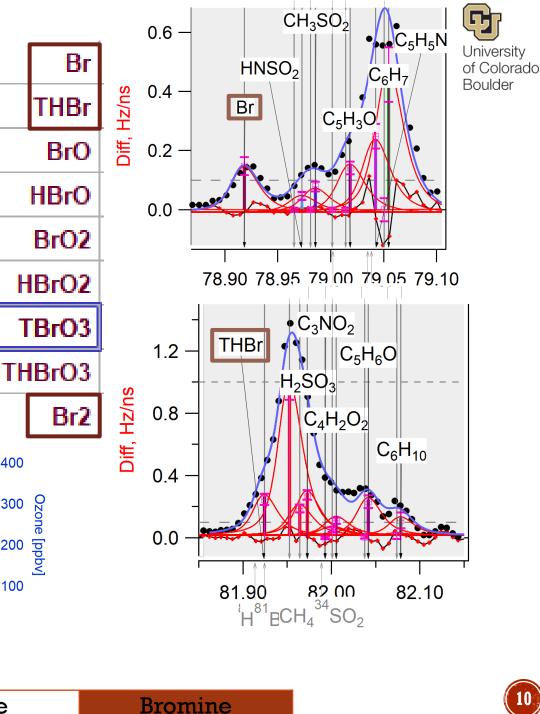
Compounds we calibrated for:

NH₄Br, NH₄BrO, KBrO₃


up to m/z 450

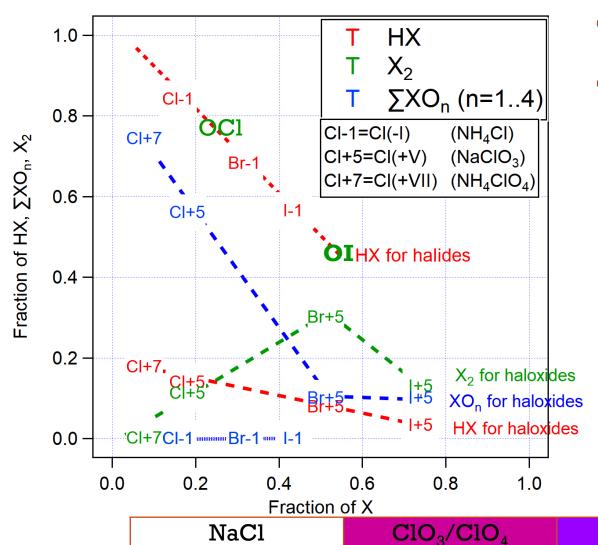
 RIE was derived from ammonium balance of Br(-1) and Br(+1)

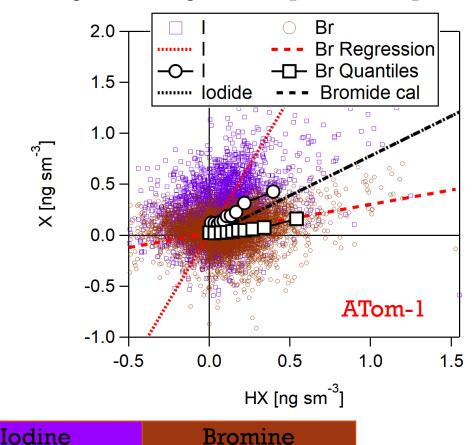
$$RIE = 0.68$$


NaCl

- BrO_x⁺ is almost negligible in all cases, unlike Br₂⁺
- Careful when fitting HBr!

ClO₃/ClO₄


Iodine

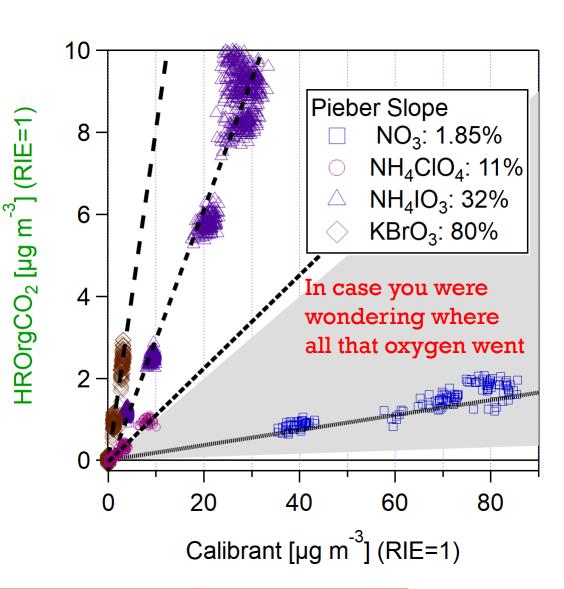

Tracking oxidation state of halogens

by fragmentation

- HX is always the most important ion besides X
- Except for chlorate and perchlorate, XO_n ions are not very important
- Feasible to use HX/X as a marker for oxidation state (especially in low conc environments)
- BUT: Organic halogens complicate the picture, TBC

Revisting the Pieber effect

Pieber (ES&T 2016, AMS vaporizer):


$$NH_4NO_3 + "C_{x, heater}" => CO_2 + products (at 600 C)$$

Gunpowder ignition (at \sim 1300 C):

$$2NH_4NO_3 + C + S => CO_2 + SO_2 + 2H_2O + 2N_2$$

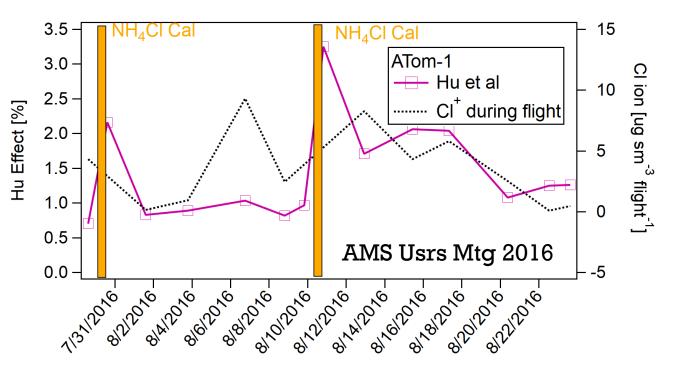
Perchlorate and bromate are well known as oxidizers in "boutique" explosives, and are much stronger oxidizers than nitrate

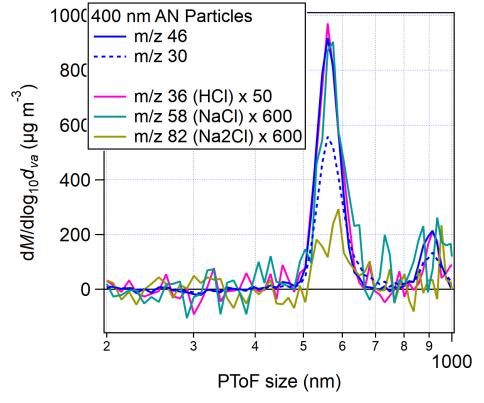
Anion	E° [V]			
NO ₃ -	0.96			
MnO ₄ -	1.49			
ClO ₄ -	1.2			
IO ₃ -	1.19			
BrO ₃ -	1.50			

Bromine

ADDITIONAL SLIDES

Looking again at the Hu effect (AS&T, 2017)

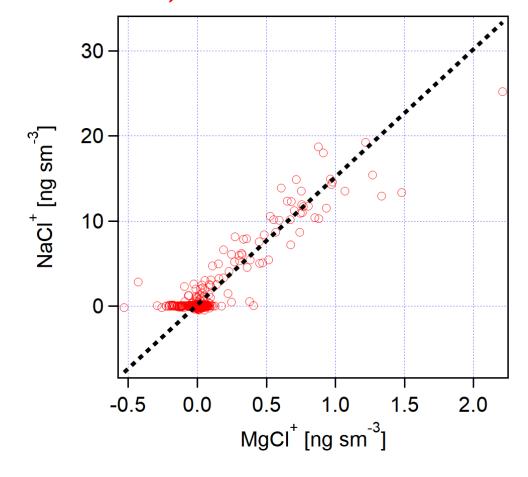



When performing AN calibrations, some fun heater chemistry is observed:

$$Cl_{(heater)} + HNO_{3(g)} = > HCl_{(g)} + products$$

Refractory species are prime candidates. In ATom, we see this mostly after lots of SS exposure (and cals)

AN Calibration After SS Cal



Can we determine Mg/Na ratios

ATom-3, RF311, NE Atlantic (44-60N)

Posfai et al, JGR 1995

Table 3. Differences Between Atomic Ratios of Na to Mg, K, Ca, S, and Cl Relative to the Values of Seawater

Sample Number	Group Number	Δ Cl/Na	Δ S/Na	Δ A ⁻ /Na	Δ Mg/Na	Δ K/Na	Δ Ca/Na
9	I	-0.34	0.02	0.32	0.01	0.001	0.001
	11	-0.87	0.03	0.83	0	0	0.001
	V	-1.03	0.62	-0.12	0.03	0.005	0.011
11	I	-0.19	0.03	0.16	0.01	0.005	0.005
18	n	-0.86	0.07	0.74	0.01	0.001	0.009
	IV	-1.10	0.20	0.71	0.01	0	0.001
	v	-1.15	0.48	0.23	0.01	0.006	0.008
19	I	-0.39	0.04	0.34	0.02	0.004	0.002
	П	-0.68	0.17	0.37	0.01	0.002	0.004
	III-IV	-1.07	0.11	0.89	0.02	0.006	-0.002
	v	-1.13	0.46	0.24	0.01	0	-0.005
20	I	-0.26	0.03	0.23	0.01	0.002	0.001
	П	-0.54	0.13	0.30	0.01	0.003	0
	III	-1.09	0.02	1.03	-0.01	-0.001	-0.002
	IV	-1.02	0.16	0.68	0	-0.001	-0.003
	v	-1.14	0.37	0.36	-0.01	-0.005	-0.008
25	I	-0.43	0.07	0.34	0.02	0.002	0.003
	П	-0.80	0.07	0.69	0.02	0.003	0.001
	III	-1.09	0.04	0.97	-0.02	-0.002	0
	IV	-1.12	0.16	0.82	0.01	0	-0.001
	v	-1.15	0.49	0.19	0	0.002	0.002
28	1	-0.36	0.06	0.27	0.02	0.005	0.004
	11	-0.71	0.09	0.56	0.01	0 003	0.009
	Ш	-1.10	0.06	1.01	0.01	0.004	0.002
29	1	-0.36	0.04	0.33	0.02	0.005	0.004
Seawater		CI/Na= 1.16	S/Na= 0.06	A ⁻ /Na= 0.007	Mg/Na= 0.11	K/Na= 0.022	Ca/Na= 0.022

Ratios are given for compositional groups I to V in each sample as determined from EDS analyses. The column under Δ A T/Na contains calculated values; A stands for anions other than Cl and SO₄ (see text). The ratios for seawater (as listed in the bottom row) are obtained from *Millero and Sohn* [1992].

- Should consider calibrating with seasalt instead of NaCl next time around
- Ratio observed for Mg/Na is about 6.7% about halfway between seawater and aged seasalt for that part of the North Atlantic (Posfai et al, 1995)