

Including inorganics AMS PMF

Mikko Äijälä University of Helsinki / INAR AMS users meeting 2021, Jan 21st

Background

- AMS "default" chemical speciation (org, so4, no3, nh4, chl)
- Organics typically 30-80% of mass, chemically diverse class
- We think we know the inorganics (so4, no3, nh4, chl)

Background

- PMF developed in 1990's and early 2000's to additionally classify org into LV-OOA, SV-OOA, (BBOA, HOA, COA)
- Focus of studies on O:C, oxidation of organics, primary anthropogenic org classes

Background

- The past 15 years, org PMF has revolutionised our understanding of AMS organics
- Advances in inorganics classifications are minimal
- We don't always know what is org and what is inorg (especially in UMR).

Ion balance models

- Developments: Hong et al. (2017), Gysel et al. (2007), Reilly and Wood (1969)
- Salt formation schemes for AS, AN, orgNO₃
- Simplistic mathematical models
- Results difficult to verify
- Extremely sensitive to RIE calibrations

Motivation

- It is becoming increasingly clear that the hard division to org vs inorg is a hindrance.
- Mixing of polluted and fresh air alters nucleation, SOA formation, volatility, oligomerization, mixing state etc.
- Many of the chemically interesting atmospheric compounds are orginorg mixtures (ON, amines, OS...)
- Seems we really don't know the inorgs well enough...

(Fig: O. Garmash, 2020)

(Fig: L. Heikkinen, 2020)

Motivation

<u>Pro</u>

- Currently incomplete understading of inorganics, growing scientific interest
- Procedures ~identical to org analysis, technically simple
- Does not exclude org only analysis, no reason not to
- Commensurability (calibration / stability issues)

Con

- More factors required, harder to arrive at physicochemically correct solutions.
- PMF "detection limit" of 5% (rule of thumb, Ulbrict et al., xxx)
- Inorg used in correlation analyses
- Commensurability (calibration / stability issues)

Sun et al., 2012 (ACP)

Atmos. Chem. Phys., 12, 8537–8551, 2012 www.atmos-chem-phys.net/12/8537/2012/ doi:10.5194/acp-12-8537-2012 © Author(s) 2012. CC Attribution 3.0 License.

Atmospheric Chemistry and Physics

Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

Y. L. Sun¹, Q. Zhang², J. J. Schwab³, T. Yang¹, N. L. Ng⁴, and K. L. Demerjian³

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

²Department of Environmental Toxicology, University of California, Davis, California, USA
³Atmospheric Sciences Research Center, State University of New York at Albany, Albany, New York, USA

³Atmospheric Sciences Research Center, State University of New York at Albany, Albany, New York, USA
⁴School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences.

Georgia Institute of Technology, Atlanta, Georgia, USA

INSTITUTE FOR ATMOSPHERIC AND EARTH SYSTEM RESEARCH

Äijälä et al., 2019 (ACP)

Atmos. Chem. Phys., 19, 3645–3672, 2019 https://doi.org/10.5194/acp-19-3645-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site

Mikko Äijälä¹, Kaspar R. Daellenbach¹, Francesco Canonaco², Liine Heikkinen¹, Heikki Junninen^{1,3}, Tuukka Petäjä¹, Markku Kulmala¹, André S. H. Prévôt², and Mikael Ehn¹

¹Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland

²Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

³Laboratory of Environmental Physics, University of Tartu, Tartu, Estonia

PMF: Org + inorg partly mixed

(Sun et al., 2012, NYC 2009)

(Äijälä et al., 2019, Hyytiälä 3 yr)

21.1.2021

Improved chem. speciation

Steps (for UMR)

- Extract raw matrices, join them together in one matrix
 - Preserve species info!
- 2. <u>Downweight duplicate info</u> <u>similar to org PMF!</u>
 - (i.e. similar to mz44 related dw)
- 3. Run PMF as usual, colour results by species info
- 4. Apply correct RIE to PMF results when calculating mass loading!

						0.04*frag_nitrate[30],0.04*frag_nitrat	e[46]
					0.1*frag_NH4[16]			0.04*frag_nitrate[4
rag_SO3[16]	0.04*frag_SO3[18]				1*0.90909*frag_N			
rag_SO3[17]	mz17over18_smth*frag_so3[18]				0*1.1*frag_NH4[1	.6],1*frag_NH4_17[
rag_SO3[18]	0.67*frag_SO3[64],0.67*frag_SO3[48]							
rag_SO3[19]	0.000691*frag_SO3[18],0.002*frag_SO3[17]						
rag_SO3[20]	0.002*frag_SO3[18]							
rag_SO3[24],frag_H2SO4[24]	0.005*frag SO3[0.005*frag H2SO4[48]							
						30,-frag_air[30],-fr	ag_organic[30]	
						0.00405*frag_nitra	ate[30]	-frag_organic[30]
rag_SO3[32],frag_H2SO4[32]	0.21*frag_SO3[4 0.068*frag_H2SO4[81],		[98]			0.002*frag_nitrate	[30]	
rag_SO3[33],frag_H2SO4[33]	0.0079*frag_SO3 0.0079*frag_H2SO4[32]							
rag_SO3[34],frag_H2SO4[34]	0.044*frag_SO3[0.044*frag_H2SO4[32]							
		frag_HCI[35],frag	35,-frag_HCl[35]	0.231*frag_HCl[36]			
		frag_HCl[36]		36,-frag_air[36]				
		frag_HCI[37],frag	0.323*frag_Cl[35]	0.323*frag_HCl[35]			
		frag_HCl[38]		0.323*frag_HCl[36	1			
							39	

- // Downweight scheme for fragtable dependencies (duplicate information)
- // this function downweights signals that are products of fragtable calcs
- // Run AFTER generating the combinex mx and applying PET preprocesing!
- // 10.5.2017 /MA mod 29.5.2017 for better downweighting
- function DW_frags()
- make /o /N=0 variables_to_dw, dw_factor downweight

// list of variables to

- print "downweighted following m/z variables"
- // NO3
- i+=1; variables_to_dw [i]={14.02}; dw_factor [i]={1.07} //no3, calculated from mz 30 & 46
- i+=1; variables_to_dw [i]={30.02}; dw_factor [i]={1.08} //no3, calculated from mz 30
- i+=1; variables_to_dw [i]={31.02}; dw_factor [i]={1.08} //no3, calculated from mz 30
- i+=1; variables_to_dw [i]={32.02}; dw_factor [i]={1.08} //no3, calculated from mz 30
- i+=1; variables_to_dw [i]={46.02}; dw_factor [i]={1.01} //no3, calculated from mz 46
- i+=1; variables_to_dw [i]={47.02}; dw_factor [i]={1.01} //no3, calculated from mz 46
- i+=1; variables_to_dw [i]={48.02}; dw_factor [i]={1.01} //no3, calculated from mz 46
 i+=1; variables_to_dw [i]={63.02}; dw_factor [i]={1.07} //no3, calculated from mz 30 & 46

 Remember: Mass specs calculated in nitrate equivalent mass, not ug/m3

Conclusion

- Many reasons to add inorganics when doing PMF (especially for UMR)
 - Org-inorg chemistry
 - Improved speciation
 - Understanding of data

 Requires some technical steps in pre/post-processing, still very similar to org PMF