

Why RIE and density matter for quantification

$$OA(\mu g \ m^{-3}) = \frac{10^{12}}{CE_{OA}} \frac{MW_{NO_3}}{RIE_{OA}} \sum_{IE_{NO_3}QN_A} \sum_{all \ i} I_{OA,i}$$

$$Volume (\mu m^3 cm^3) = \frac{OA_{mass}}{\rho_{OA}}$$

CE for ambient data does not depend on OA

NOT CASE FOR PURE OA (SOURCE/CHAMBER EXPT)

Middlebrook et al., AST, 2012

Organic Aerosol RIE overview from prior lab studies

Compilation of Org standards leads to RIE ~1.4 Jimenez et al., AST, 2016

Further analysis indicates RIE 1.6±0.5 (but more analysis of ambient studies needed to verify)

Xu et al., AST, 2018

Is there evidence for higher RIE for reduced compounds?

More ambient measurements needed to derive variable RIE parameterizations Large biases not observed for ambient OA mass calculated with constant RIE =1.4 (even for high POA content)

Offsetting of RIE by CE differences? RIE (POA) > RIE (SOA) CE (POA) < CE (SOA)

Cite This: Environ. Sci. Technol. 2018, 52, 5308-5318

Article pubs.acs.org/est

Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment

Ernesto Reyes-Villegas,**[†] Thomas Bannan,[†] Michael Le Breton,^{†,§} Archit Mehra,[†] Michael Priestley,[†] Carl Percival,^{†,||} Hugh Coe,[†] and James D. Allan*,^{†,‡}

RIE $\sim 1.6 - 3.1$

Questions/Goals of this study

• Can we empirically parameterize variation in Org RIE, particularly for complex OA mixtures?

- How well does the lab Org RIE standards match RIE of complex OA (ambient, chamber SOA, emissions)?
 - Extend Wen's work to see if RIE from ambient material (extracted from filters) follow the trends from laboratory standards
- Investigate current parameterizations for OA density (density can be also directly obtained from RIE cal set-up)

Protocol to measure OA RIE

Data Processing

Input Mass= (CPMA Mass/particle)*CPC Number

AMS Mass = $(1/CE_SRIE_S)^*AMS$ NO3 Equiv. Mass

CE_S*RIE_S = NO₃ Equiv. Mass/CPMA Input Mass

CE_S ~AMS pTOF Single Particle Counts/ CPC

OR

AMS LS Particle Counts/ CPC

Taken from: Xu et al. AS&T,(2018) Users' Meetings

Species	Density	O:C	H:C
Levoglucosan	1.69	0.83	1.67
Xylitol	1.52	1.00	2.40
Oleic Acid	0.90	0.11	1.89
Squalane	0.81	0.00	2.07
Sebacic Acid	1.21	0.40	1.80
Anthracene	1.25	0.00	0.71
Succinic Acid	1.56	1.00	1.50
1,2,6-Hexanetriol	1.11	0.50	2.33
Pyrene	1.27	0.00	0.63
Octadecane	0.78	0.00	2.11
Oxidation experiments	Variable	Variable	Variable

Extending RIE vs OSc measurements to more species

- OA standards in atomized in acetonitrile to extend OSc range
- Lower OSc compounds have higher variability (investigating why)
- -1 < OSc < 1 reproducible with different solvents and a different range of copounds

Change in RIE vs OSc may impact bulk OA analysis

- Urban bulk OA has lower OSc than continental background and remote atmosphere due to emissions of hydrocarbon-like aerosol
- Will be investigating comparisons of different comparisons (e.g., volume, scatter, OC/OM) from prior studies
- Will investigate if having and a predictable RIE vs OSc in complex OA mixtures improves agreement
- Need to add biomass burning and more studies
- If planning on measuring "continental background" to remote atmosphere, either can safely assume current default RIE = 1.4 agrees to 38% or use levoglucosan to calibrate

Using mixtures with internal calibrant for direct measure of OA RIE

Xu et al. (2018) showed for non-organic acids, binary mixture (organic + ammonium nitrate) reproduces RIE observed in single component (organic) systems.

Organic acids DO NOT work due to organic acid + NH4 reaction.

Expanding the compounds investigated, generally observe agreement within 13% between binary mixture (organic + ammonium nitrate) vs single component

Mixture of Levoglucosan and other OA to directly measure RIE of complex mixtures

Only a limited number of solutions have been evaluated. More solutions for higher OSc/RIE will be made to further evaluate the accuracy of the RIE vs OSc relationship.

Further work to be done....

- Levoglucosan is reproducible in water or organic solvent and w/ or w/out ammonium nitrate (as levoglucosan has CE ~ 1)
- For higher RIE, oleic acid appears reproducible and has CE ~1. Standard most easily made in organic solvent
- Further experiments to investigate standards in different solutions and mixtures being conducted to investigate reproducibility
- Evaluate prior ambient studies, where the CE cut-off is well known, to see if there is evidence/constraint of RIE on comparisons
- Evaluate RIE of different ambient filter OA fractions to investigate RIE vs.
 OSc to compare lab calibrations w/ ambient OA

$$\rho_{OA} = \frac{12 + H:C + 16 \times O:C}{7 + 5 \times H:C + 4.15 \times O:C}$$

- <u>Kuwata et al. (2012)</u> showed that OA density could be predicted using the observed H:C and O:C values from AMS
- HOWEVER, they created a correction value to improve the agreement
- FURTHER, this was done prior to the <u>Canagaratna et al. (2015)</u> improved elemental analysis and without any nitrogen containing compounds

Kuwata parameterization maybe underpredicting density

- After correcting the O:C and H:C from Kuwata et al. (2012) and adding results from recent laboratory study (both pure OA standards and OA produced by oxidation), new fit shows ~10% lower predicted vs observed density
- More studies will be conducted to investigate

Conclusions so far

Is lab generated standard OA RIE vs
 OSc relationship observable in ambient
 OA

- Binary mixtures can be used to eliminate CE.
- A "simple" RIE calibrant could be identified to represent OSc < -0.5. Best candidates are levoglucosan alone, binary internal mixtures of alcohol + ammonium nitrate, or OA standard with levoglucosan (will identify more)

- Current

 parameterization
 may under-predict
 density.
- More studies to follow

16