Characterisation and first measurements of a fully-automated mini-AMS on a passenger aircraft (IAGOS-CARIBIC)

Christiane Schulz1,2, J. Schneider2, M. Hermann1, F. Rubach1,3, C. Gurk4, A. Ludwig2, L. Poulain1, F. Obersteiner5, T. Gehrlein5, H. Bönisch5, J. Ditas6, Y. Cheng6, H. Su7, A. Petzold8, U. Bundke8, U. Pöschl7, A. Zahn5, A. Wiedensohler1, S. Borrmann2,9

1Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
2Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
3now at: Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
4Instrument Development & Electronics Group, Max Planck Institute for Chemistry, Mainz, Germany
5Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
6Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany
7Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
8Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, Germany
9Institute for Atmospheric Physics, Johannes Gutenberg-University, Mainz, Germany

January 21, 2021, AMS User Meeting, C. Schulz
IAGOS-CARIBIC infrastructure

- IAGOS = In-service Aircraft for a Global Observing System
- European Research Infrastructure
- Part: IAGOS-CARIBIC
 - CARIBIC = Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container
 - Passenger aircraft with scientific measurement container
 - In-depth and complex investigation of UT/LS on regular basis

http://www.caribic-atmospheric.com/

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2012</td>
<td>DFG proposal (TROPOS, MPIC, JGU Mainz)</td>
</tr>
<tr>
<td>January 2014</td>
<td>Delivery of miniAMS</td>
</tr>
<tr>
<td>2014-2016</td>
<td>Reconfiguration, automatic operation, certification → Florian Rubach</td>
</tr>
<tr>
<td>January 2017</td>
<td>First EMI-test at Lufthansa</td>
</tr>
<tr>
<td>March 2017</td>
<td>New DFG proposal (TROPOS)</td>
</tr>
<tr>
<td>February 2018</td>
<td>First flight – no data</td>
</tr>
<tr>
<td>October 2018</td>
<td>First flight with recorded data</td>
</tr>
<tr>
<td>November 2018</td>
<td>Laboratory characterisation and comparison with HR-ToF-AMS at TROPOS → Anna Ludwig, Laurent Poulain</td>
</tr>
<tr>
<td>October 2018 – March 2020</td>
<td>38 flights, 14 successful with available data</td>
</tr>
<tr>
<td>March 2020</td>
<td>Last IAGOS-CARIBIC flight so far</td>
</tr>
<tr>
<td>Ongoing until Dec 2021</td>
<td>Modification and new certification for Lufthansa A350</td>
</tr>
</tbody>
</table>
Technical challenges for full automation

- No operator on board
- No connection to instrument
- 1 flight series = 4 flights
 → Full automation needed!

Schneider et al., in prep. for AMT
Technical challenges for full automation
Technical challenges for full automation

Master PC

Initialize

Standby

Measure

Instruments

CARIBIC-AMS PC

VBus Unit

Pre-pump

Turbomolecular Pump

Valve 1

Valve 2

Valve 3

Inlet

Filter

Constant Pressure Inlet

CPI

Particle beam

Filament

Vaporizer

P1

P2

Chopper

Aerodynamic lens

Ion path

Signal

MCP

Constant Pressure Inlet

Initialize minimal power consumption

Standby default

Measure \(p_{amb} < 800 \text{ mbar} \)
Technical challenges for full automation

Initialize:
- VBus unit and PC on
- CARIBIC-MAN software starts
- Everything handled by CARIBIC-MAN and VBus unit

Master PC

Initialize: minimal power consumption

Standby Measure

Instruments

CARIBIC-AMS PC

VBus Unit

- Constant Pressure Inlet
- Initialize: minimal power consumption
- Standby default
- Measure
- Initialize:
 - VBus unit and PC on
 - CARIBIC-MAN software starts
 - Everything handled by CARIBIC-MAN and VBus unit

Pre-pump

Valve 1

Turbomolecular Pump

Valve 2

Particle beam

Valve 3

Constant Pressure Inlet

Aerodynamic lens

Chopper

Filament

Vaporizer

P1

P2

P3

MCP

Ion path

Signal
Technical challenges for full automation

Standby:
- Pre-pump on, valve 1 open

Standby:
- Minimal power consumption
- $p_{amb} > 800$ mbar

Measure

Instruments

CARIBIC-AMS PC

VBus Unit

- Master PC
- Pre-pump
- Turbomolecular Pump
- Filament
- Vaporizer

Inlet

Valve 1

Valve 2

Valve 3

Filter

P1

P2

P3

Chopper

Particle beam

Aerodynamic lens

Ion path

Signal

MCP

Constant Pressure Inlet

Standby:
- Pre-pump on, valve 1 open

Measure

Initialize

Master PC

Instruments
Technical challenges for full automation

Standby:
- Pre-pump on, valve 1 open
- Turbopump on

Initialize minimal power consumption $p_{amb} > 800$ mbar

Measure

Instruments

CARIBIC-AMS PC

VBUS Unit

Master PC

- Pre-pump
- Valve 1
- Turbopump on

Inlet

- Filter
- Valve 3

- Pre-pump

- Valve 1

- Constant Pressure Inlet
- Valve 2

- Turbomolecular Pump

- Particle beam
- Chopper
- Filament
- Vaporizer

- Ion path

- Signal
- MCP

- P3

- < 5 mbar
Technical challenges for full automation

Standby:
- Pre-pump on, valve 1 open
- Turbopump on
- TPS on, DAQ starts

Standby

- Power consumption $p_{amb} > 800$ mbar

Master PC

Initialize

Measure

VBus Unit

CARIBIC-AMS PC

Instruments

Pre-pump

Valve 1

Valve 3

Valve 2

Filter

Inlet

Turbomolecular Pump

Particle beam

Filament

Vaporizer

P1

P2

P3

Signal

MCP

Chopper

Constant Pressure Inlet

Aerodynamic lens

Ion path
Technical challenges for full automation

Measure:
• Valve 2 (inlet) open, CPI on
• Filament, vaporizer, MCP on

Master PC

Initialize minimal power consumption
Standby $p_{amb} > 800$ mbar
Measure $p_{amb} < 800$ mbar

Instruments

CPI: Molleker et al., 2020
Technical challenges for full automation

Measure:
- Valve 2 (inlet) open, CPI on
- Filament, vaporizer, MCP on
- m/z & SI calibration
- Data acquisition (ambient & filter)

- **Initialize** minimal power consumption
- **Standby** $p_{\text{amb}} > 800 \text{ mbar}$
- **Measure** $p_{\text{amb}} < 800 \text{ mbar}$

Instruments

CARIBIC-AMS PC

VBus Unit

Master PC

Pre-pump

Turbomolecular Pump

Particle beam

Chopper

Ion path

Signal

Filament

Vaporizer

Valve 1

Valve 2

Valve 3

Constant Pressure Inlet

Aerodynamic lens

P1

P2

P3

Filter

< 3 e-6 mbar
Technical challenges for full automation

Standby:
- Valve 2 (inlet) closed
- DAQ stops
- Voltages off

Master PC

Initialize minimal power consumption

Standby

\[p_{\text{amb}} > 800 \text{ mbar} \]

Measure \[p_{\text{amb}} < 800 \text{ mbar} \]

Instruments

CARIBIC-AMS PC

VBus Unit

Pre-pump

Turbomolecular Pump

Valve 1

Valve 2

Valve 3

Filter

Constant Pressure Inlet

Aerodynamic Lens

Chopper

Particle beam

Filament

Vaporize

Signal

Ion path

< 3 e-6 mbar

Valve 2 (inlet) closed
Technical challenges for full automation

Power off

Master PC

Initialize

minimal power consumption

Standby

p_{amb} > 800 \text{ mbar}

Measure

p_{amb} < 800 \text{ mbar}

Instruments

CARIBIC-AMS PC

VBus Unit

Pre-pump

Turbomolecular Pump

Valve 1

Valve 2

Valve 3

Filter

Constant Pressure Inlet

Aerodynamic lens

Particle beam

Chopper

Filament

Vaporizer

P1

P2

P3

Ion path

Signal

MCP

C. Schulz, AMS User Meeting 2021
Comparison measurements

- AMS calibrated with CPC
- Comparison with HR-ToF-AMS
 - Very good agreement between CARIBIC-AMS and HR-ToF-AMS

Measurements by Anna Ludwig and Laurent Poulain
Schneider et al., in prep. for AMT
Comparison measurements

- Comparison with C-ToF-AMS
- Very good agreement for different species

Measurements by Johannes Schneider and Christiane Schulz
Schneider et al., in prep. for AMT
ePToF-Chopper

- MPIC-internal developed automation
 → Electronics workshop, Christian Gurk
- Sequence length: 127
- Oversample: 6; standard value is 2?
 (https://sites.google.com/site/tofamsdaq/manual-v5/menu-window/configuring-eptof)
ePToF-Chopper

- MPIC-internal developed automation → Electronics workshop, Christian Gurk
- Sequence length: 127
- Oversample: 6; standard value is 2? (https://sites.google.com/site/tofamsdaq/manual-v5/menu-window/configuring-eptof)

- Microprocessor with frequency and phase automated rotating field
- Feedback of microprocessor via optical scanning of rotation
- Microprocessor gets pulse from chopper once per rotation

- Microprocessor generates a virtual „slit“-signal which is in phase with extraction pulses generated from MS (every 762 = 127 * 6) → triggering of data acquisition; efficiency > 95%
 - Issue: if the virtual slit signal is not in phase with extraction pulse, some complete chopper rotations will not be used for measurements → efficiency below 50%
 - Real phase of chopper adjusted relative to virtual slit pulses

Besides: maintenance checks if chopper wheel does not hit the wall, servo is not consuming to much power
• No pressure dependence
• CPI provides constant mass flow and pressure in aerodynamic lens
Data availability

- October 2018 – March 2020 → 38 flights
- 14 successful with (partly) available data
Case Study: Alberta forest fire plume, June 2019

- FL570: Munich – Vancouver
- June 2019: forest fires in Canada for several days
- Plume visible by satellite

Schulz et al., EAC, 2020
Case Study: Alberta forest fire plume, June 2019

- FL570: Munich – Vancouver
- June 2019: forest fires in Canada for several days
- Plume visible by satellite

https://wvs.earthdata.nasa.gov/api/v1/snapshot?REQUEST=GetSnapshot&TIME=2019-06-19T00:00:00Z&BBOX=34.9734375,-138.0375,73.153125,-63.857812499999994&CRS=EPSG:4326&LAYERS=MODIS_Terra_CorrectedReflectance_TrueColor,Coastlines,MODIS_Combined_Thermal_Anomalies_All&WRAP=day,x,none&FORMAT=image/png&WIDTH=1688&HEIGHT=869&ts=1597405116941

Schulz et al., EAC, 2020
Low values for most part of the flight
One massive plume event

Case Study: Alberta forest fire plume, June 2019

Altitude

CO

rBC

Aerosol mass / μg m⁻³

1000
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Time / UTC
18:00 19:00 20:00 21:00 22:00 23:00

FL 570

Schulz et al., EAC, 2020
Case Study: Alberta forest fire plume, June 2019

- Low values for most part of the flight
- One massive plume event
- CO -> 1200 ppb
- rBC -> 2 µg m\(^{-3}\)
- Org, NO\(_3\), NH\(_4\) ↑
- Aerosol mass conc. (sum) -> 220 µg m\(^{-3}\)

Schulz et al., EAC, 2020
Organic aerosol from forest fires not strongly oxidized, but partly processed.
Lens pressure measurements

- Ongoing laboratory measurements
- Lens transmission not ideal
- Idea: lens pressure too low
Lens pressure measurements

- Ongoing laboratory measurements
- Lens transmission not ideal
- Idea: lens pressure too low
- Issue: increasing p_{lens} not possible → turbo pump power consumption close to maximum

250nm: not corrected for doubly charged particles

$P_{\text{amb}} = 200\text{ mbar}$
NH_4NO_3
flow corrected
△ 11.12.2020
● 17.01.2021

$1.7\text{ mbar} = 1.275\text{ Torr}$

$1.7\text{ mbar} = 1.9\text{ Torr}$

C-ToF-AMS:
$p_{\text{lens}} = 2.5\text{ mbar}$
$= 1.9\text{ Torr}$

- 27 -

C. Schulz, AMS User Meeting 2021
Lens pressure measurements

- Ongoing laboratory measurements
- Lens transmission not ideal
- Idea: lens pressure too low
- Issue: increasing p_{lens} not possible \rightarrow turbo pump power consumption close to maximum

- Lens pressure is too low
 - Lens transmission not ideal at the moment \rightarrow what to do?
 - Turbo split flow pump close to maximum \rightarrow no increase of p_{lens} possible
 - Skimmer maybe too small \rightarrow need to check, any information on this available?
 - What lens pressure do other miniAMS-users have?

Graph Details

- $P_{\text{amb}} = 200$ mbar
- NH$_4$NO$_3$
- Flow corrected
- 1.7 mbar = 1.275 Torr
- Plateau?
- $p_{\text{lens}} = 2.5$ mbar = 1.9 Torr

250nm: issue with doubly charged particles
Thank you for your attention!

Acknowledgements:

IAGOS-CARIBIC Team
DFG
BMBF
Deutsche Lufthansa AG
NASA Earthdata