

Organic aerosol components across Europe using 24 ACSM/AMS yearlong datasets and a harmonized source apportionment protocol

IAN (GANG) CHEN^{1,2}, and the whole COLOSSAL Team²

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland ²COST Action CA16109 Chemical On-Line cOmpoSition and Source Apportionment of fine aerosoL (COLOSSAL)

Motivations

PM_{2.5} concentrations in relation to the annual limit value in 2016

How can we reduce emissions?

The sources of organic aerosol (20-90% of total submicron aerosol) need to be characterized

Most-recent European Overview work

Crippa et. al., (2014) presents a spatial variabilities of organic aerosol (OA) sources with a consistent source apportionment (SA) guideline for 25 datasets collected using the Aerodyne aerosol mass spectrometer (AMS)

Research gaps:

- 1. Positive Matrix Factorization (PMF) suffers from rotational ambiguity and requires subjective judgements;
- 2. The conventional PMF does not consider the evolutions of OA source profiles;
- 3. AMS is a labor-intense and expensive instrument, not desirable for long-term monitoring;
- **4. Seasonal variations** of OA sources are still poorly understood without long-term datasets.

Data Coverage

What is rolling PMF?

- Smaller time window can shift over the whole PMF input (>1 year) with a step of one day for many (e.g., 50) repeats
- Take the temporal variations of OA sources into account
- Estimate rotational uncertainties of PMF while doing random a-values with bootstrap re-sampling
- Select "good' runs using t-test of criteria

Standard procedures for rolling PMF

A standardized protocol to analyze long-term ACSM data using SoFi Pro (Datalystica Ltd. Villigen AG Switzerland)

Spatial variation

- OOA is dominant.
- BBOA is a considerable source in most of datasets;
- HOA contributions are alike except Hyytiala and Kosetice;
- Coal combustion source is present in eastern Europe;
- COA factor has been resolved in urban sites

BBOA shows a strong temporal variation, HOA is rather consistent over time, OOA is dominant in all datasets ⁸

Yearly averaged diurnals

Both POAs show distinct diurnal patterns, OOA factors are rather stable

Yearly averaged weekly cycle

HOA seems to be decreased over the weekend, but the opposite for BBOA

Ш	This study provides a standardized protocol to analyze long-term ACSM data using SoFi Pro
	12/24 datasets have preliminary results so far;
	OOA is still the largest contributor in Europe;
	Biomass burning is a considerable source in most of the stations, especially during the cold
	period
	It could provide a comprehensive overview of the temporal/spatial variabilities of the OA
	sources in Europe;
	With the overlap from 2016 to 2017, the origin of long-range transport aerosols could be
	determined;
	With highly time resolved OA sources, it could provide additional constrains for air
	quality/climate models