Organic aerosol components across Europe using 24 ACSM/AMS yearlong datasets and a harmonized source apportionment protocol

IAN (GANG) CHEN1,2, and the whole COLOSSAL Team2

1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
2COST Action CA16109 Chemical On-Line cOmposiSition and Source Apportionment of fine aerosoL (COLOSSAL)

Jan 21th, VIRTUAL 2021 AERODYNE AMS/ACSM USER MEETING
Motivations

How can we reduce emissions?

The sources of organic aerosol (20-90% of total submicron aerosol) need to be characterized...
Most-recent European Overview work

Crippa et. al., (2014) presents a spatial variabilities of organic aerosol (OA) sources with a consistent source apportionment (SA) guideline for 25 datasets collected using the Aerodyne aerosol mass spectrometer (AMS).

Research gaps:
1. Positive Matrix Factorization (PMF) suffers from rotational ambiguity and requires subjective judgements;
2. The conventional PMF does not consider the evolutions of OA source profiles;
3. AMS is a labor-intensive and expensive instrument, not desirable for long-term monitoring;
4. Seasonal variations of OA sources are still poorly understood without long-term datasets.
Data Coverage

24 long-term datasets across Europe have Aerosol Chemical Speciation Monitor (ACSM)
What is rolling PMF?

- Smaller time window can **shift** over the whole PMF input (>1 year) with a step of one day for many (e.g., 50) repeats
- Take the **temporal variations** of OA sources into account
- Estimate rotational uncertainties of PMF while doing random a-values with bootstrap re-sampling
- Select “good’ runs using t-test of criteria
Standard procedures for rolling PMF

1. **Seasonal PMF analysis**
 - Determine the number of factors

2. **Bootstrap Seasonal solutions**
 - Test the stability of the seasonal solution;

3. **Conducting Rolling PMF**
 - Constrain the POA with reference profiles/seasonal solutions
 - PMF window = 14 days
 - Repeats = 50
 - Step = 1 day

4. **Criteria-based Selection**
 - Define your own criteria to select and reposition "good" PMF runs
 - T-test of criteria to avoid subjective judgments

Number of runs in a year:

\[(365 - 14) \times 50 \times 2 = 36500\]

- Days
- Repeats
- 4 to 5 factors

A standardized protocol to analyze long-term ACSM data using SoFi Pro (Datalystica Ltd. Villigen AG Switzerland)
Spatial variation

- OOA is dominant
- BBOA is a considerable source in most of datasets;
- HOA contributions are alike except Hyytiala and Kosetice;
- Coal combustion source is present in eastern Europe;
- COA factor has been resolved in urban sites
BBOA shows a strong temporal variation, HOA is rather consistent over time, OOA is dominant in all datasets.
Yearly averaged diurnals

Both POAs show distinct diurnal patterns, OOA factors are rather stable.
Yearly averaged weekly cycle

HOA seems to be decreased over the weekend, but the opposite for BBOA
This study provides a standardized protocol to analyze long-term ACSM data using SoFi Pro; 12/24 datasets have preliminary results so far; OOA is still the largest contributor in Europe; Biomass burning is a considerable source in most of the stations, especially during the cold period.

It could provide a comprehensive overview of the temporal/spatial variabilities of the OA sources in Europe; With the overlap from 2016 to 2017, the origin of long-range transport aerosols could be determined; With highly time resolved OA sources, it could provide additional constrains for air quality/climate models.