ACSM measurements robustness, quality assurance, and impact of upper size cutoff diameter

L. Poulain¹, G. Spindler¹, A. Grüner¹, T. Tuch¹, B. Stieger¹,

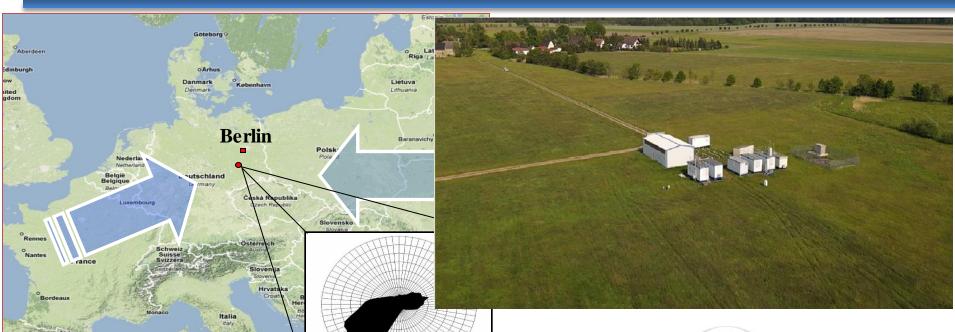
D. van Pinxteren¹, J.-E. Petit^{2,3}, O. Favez^{4,3}, H. Herrmann¹, A. Wiedensohler¹

¹Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany

²Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

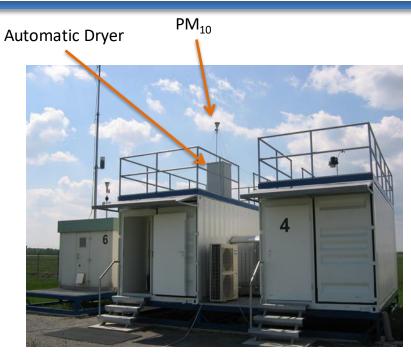
³Aerosol Chemical Monitor Calibration Centre (ACMCC), Bâtiment 701, CEA Orme des Merisiers, 91191 Gif-sur-Yvette CEDEX, France ⁴Institut national de l'environnement industriel et des risques (INERIS), Parc Technol. Alata, BP2, 60550 Verneuil-en-Halatte, France

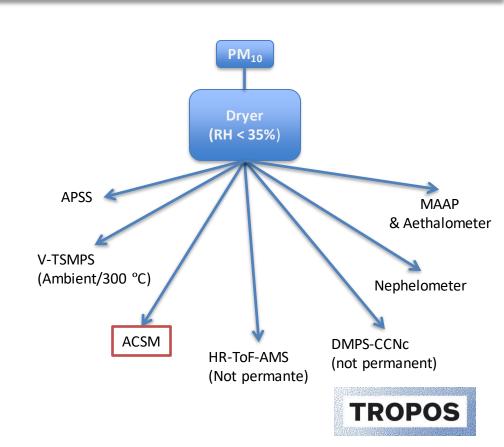
Contact: poulain@tropos.de



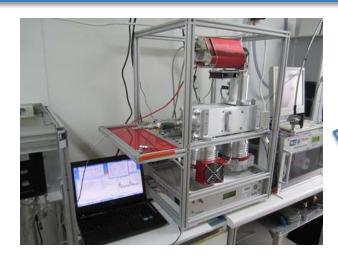
TROPOS
Leibniz Institute for
Tropospheric Research

TROPOS Research Station Melpitz (DE44)





TROPOS Research Station Melpitz (DE44)



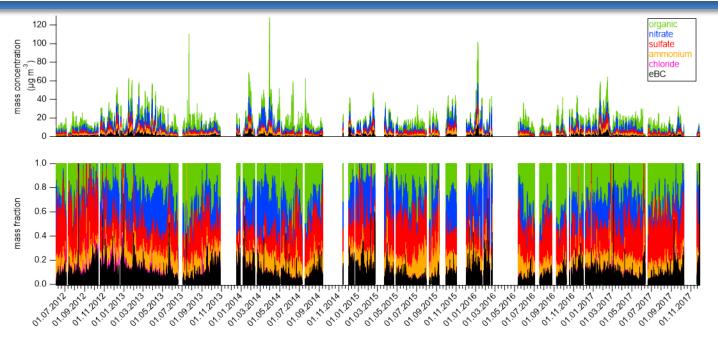
Additional collocated permanent instruments:

- MARGA (PM₁₀)
- Digitel PM₁,PM_{2.5}, PM₁₀
- Gas tracers (NO_x, O₃, SO₂)
- Ceilometer, solar radiation

Instrumental comparison

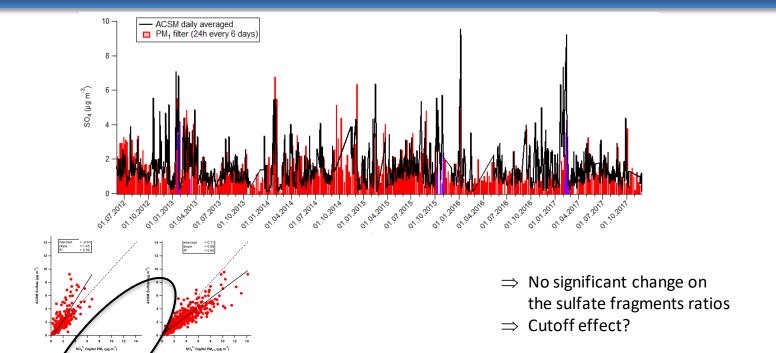
+ MAAP (eBC)

Off-line: High-Vol 24h sampling

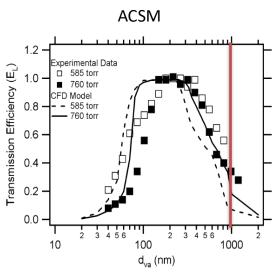

- PM_{2.5} daily
- PM₁ every 6d / daily during specific periods
- ⇒ Total mass, Nitrate, Sulfate, Ammonium, Organics

SMPS:

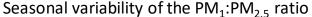
- Particle number size distribution (PNSD)
- ⇒ Total volume / Mass

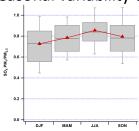

Overview of Melpitz ACSM aerosol chemical composition

date and time



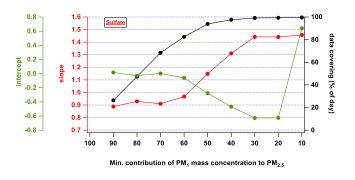
ACSM vs offline: Sulfate




Sulfate: impact of upper size cutoff diameter

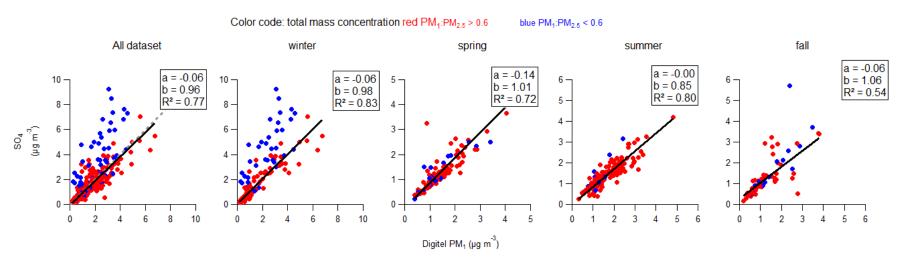
Liu, P. S. K., et al., Aerosol Sci. Technol., 41, 2007.

 \Rightarrow ACSM has transmission efficiency of 30 - 40 % at 1 μ m (d_{va})

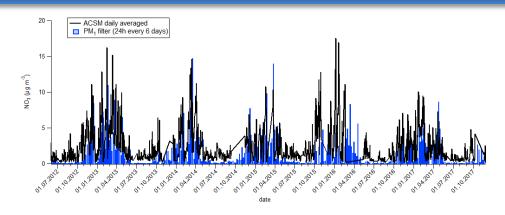


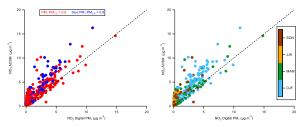
⇒ More coarse mode sulfate particle in winter compare to summer

Sulfate: impact of upper size cutoff diameter


Variability of the correlation between ACSM and PM₁ sulfate parallel to the change of the PM₁:PM_{2.5} ratio

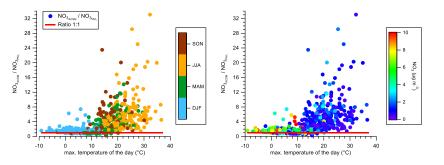
- \Rightarrow Best correlation parameters when PM₁:PM_{2.5} > 60 %
- ⇒ Clear impact of the individual size cutoff of the instruments


ACSM vs off-line: Sulfate

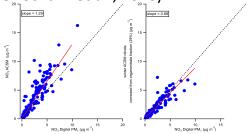


- ⇒ Overestimation days were systematically correlated to day with low PM₁:PM_{2.5} ratio and high sulfate concentration
- ⇒ Cannot completely exclude a small contribution of organo-sulfate to the ACSM sulfate signal (Farmer et al., 2010)
- ⇒ ACSM strongly correlates with off-line PM₁ sulfate without any pronounced seasonal effect

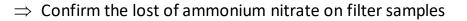
ACSM vs off-line: Nitrate


- ⇒ Strong seasonal variability
- \Rightarrow Small impact of the PM₁:PM_{2.5} ratio
- ⇒ Other sources of artefact

ACSM vs off-line: Nitrate


<u>1- temperature effect on filter samples:</u>

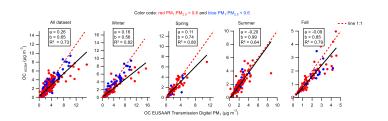
Evaporation of ammonium nitrate on quartz filter for temperature > 20 °C (Schaap et al., 2004)



2- Organo-nitrate compounds:

Organo-nitrate compounds contribute to 29 % of the AMS nitrate signal during the Feb-March 2009 campaign (Kiendler-Scharr et al., 2016)

⇒ Real impact of organo-nitrate to the ACSM nitrate signal but difficult to quantify due to the unit mass resolution of the mass spectrometer



ACSM vs off-line: organic aerosol

<u>Filters</u>: organic carbon (OC) using EUSAAR-2 protocol

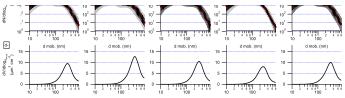
ACSM: organic mass (OM)

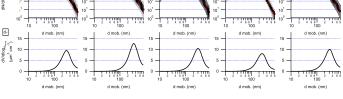
$$f_{44} = [CO_2^{+}]/[Organic]$$

$$0:C = 0.079 + 4.31 \times f_{44}$$

$$OM: OC = 1.29 \times O: C + 1.17$$

Aiken et al., 2008, Canagaratna et al., 2015


- ⇒ limitations: no correction from possible interference due to Pieber effect
- ⇒ More systematic comparison at various locations are needed



ACSM and SMPS mass closure

density =

- Time dependent density based on the ACSM + MAAP chemical composition
- Performed mass closure in both Volume and Mass => no difference

- Small size cutoff effect in cold seasons
- ⇒ PNSD can be used for near-real time quality control of the ACSM => ACTRIS CAMS 21a

 $[Total_{ACSM} + eBC]$

Adapted from Salcedo et al., 2006

Conclusion

- ACSM vs. offline $PM_{1:}$ The influence of the individual instrument cutoff **becomes non-negligible as soon as the** $PM_{1:}PM_{2.5} < 60\%$.
- $\underline{\text{ACSM vs. offline PM}_{1:}}$ It appears to be a **crucial parameter to ensure the ACSM sulfate validation** as well as to support the ACSM's sulfate calibration
- <u>ACSM vs. offline PM_{1:}</u> Nitrate suffers from **strong sampling artifacts**: temperature for offline sampler and organonitrate for ACSM
 - ⇒ More investigations on the quantification of organo-nitrate by ACSM are required
- ACSM vs. offline PM_{1:} Promising comparison between OC_{ACSM} and OC_{PM1}. OC is the only regulated organic aerosol-related variable commonly monitored with air quality networks, while ACSM provides directly OM at high time resolution
 - ⇒ More systematic comparison at various locations are needed to confirm the correlation with offline OC
- Mass balance with PNSD certainly represents the best way for in-situ quality control as well as tracking a possible drift on the ACSM performance
 - ⇒ near-real time mass closure should be considered in the near future as a standard way for in situ quality control of measurements (implementation within ACTRIS CAMS 21a in few months)

Atmos. Meas. Tech., 13, 4973–4994, 2020 https://doi.org/10.5194/amt-13-4973-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Multi-year ACSM measurements at the central European research station Melpitz (Germany) – Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter

Laurent Poulain¹, Gerald Spindler¹, Achim Grüner¹, Thomas Tuch¹, Bastian Stieger¹, Dominik van Pinxteren¹, Jean-Eudes Petit^{2,3}, Olivier Favez^{4,3}, Hartmut Herrmann¹, and Alfred Wiedensohler¹

