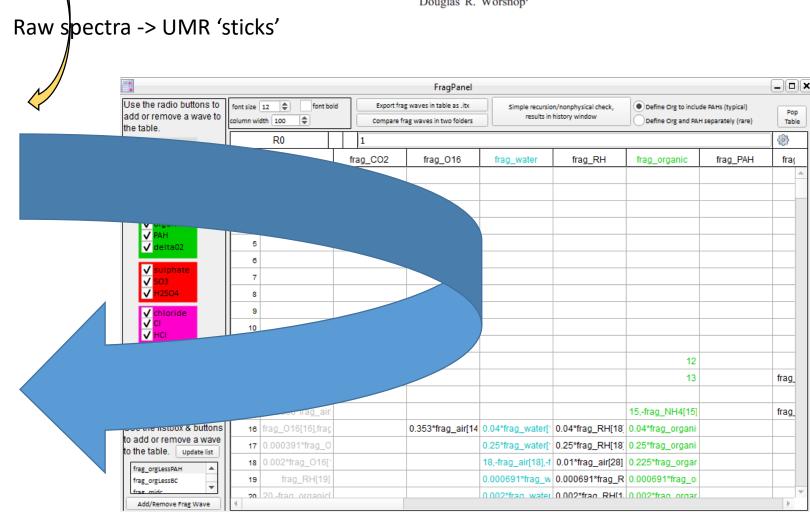


Why frag table? Why HR families? Why HR frag table?

Donna Sueper
Aerodyne Research Inc
January 22, 2021

m/z

Aerosol Science 35 (2004) 909-922

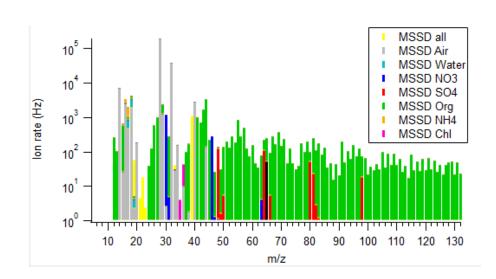


www.elsevier.com/locate/jaerosci

Technical note

A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data

James D. Allan^{a,*}, Alice E. Delia^b, Hugh Coe^a, Keith N. Bower^a, M. Rami Alfarra^{a,1}, Jose L. Jimenez^c, Ann M. Middlebrook^d, Frank Drewnick^e, Timothy B. Onasch^f, Manjula R. Canagaratna^f, John T. Jayne^f, Douglas R. Worsnop^f

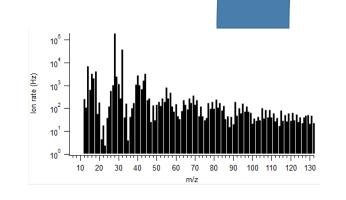

UMR frag considerations

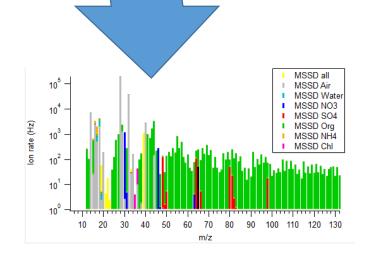
UMR frag entries come from:

- Multiple ions at the same UMR i.e. m/z 30 ions can be attributed to NO⁺, CH_2O^+ , $C_2H_6^+$,
- Isotopic abundances
 i.e. ¹⁵NO estimated from NO abundance
- Contribution of different species to the same ion
- i.e. CO_2^+ fragment can be from both air molecule or from a larger organic aerosol molecul

Care must be taken to ensure

- √ signal is not undercounted
- √ signal is not overcounted
- Squirrel frag check panel

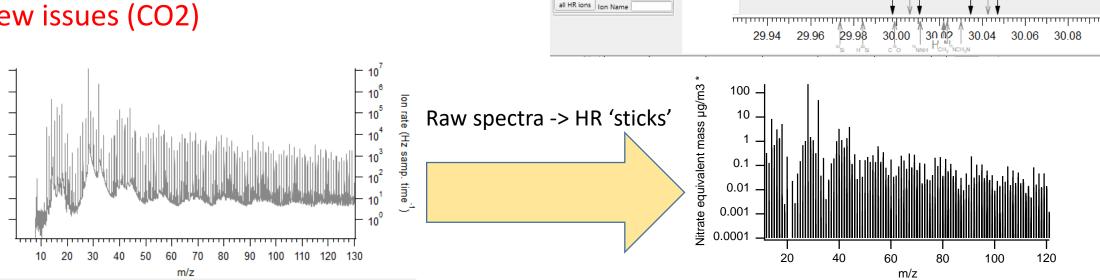

How are species defined in Squirrel?

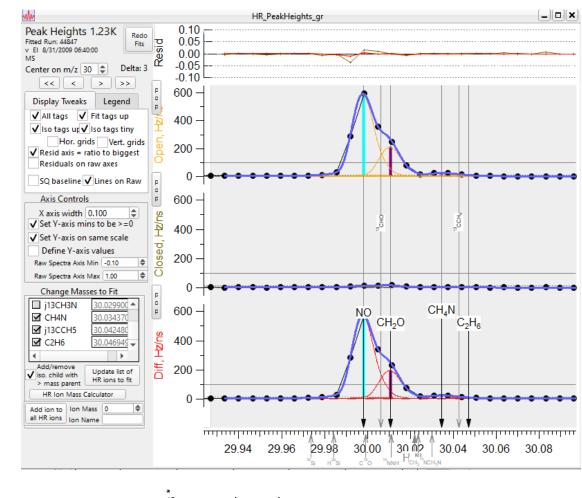

A species is a row in the batch table!

- long name
- short name
- frag wave
- RIE, CE
- Color in RGB

A UMR is not a species! m/z 30 is not a species, but NO3_30 is a species

	ReviewBatchTable							
R2	1					4		
Point	specname_list	spec_list	frag_list	lEfac_list	calfac_list	CEfac_list		
5	Ammonium	NH4	frag_NH4	4	0.25	1 ^		
6	Nitrate	NO3	frag_nitrate	1.1	0.909091	1		
7	Sulphate	SO4	frag_sulphate	1.2	0.833333	1		
8	SO\B3\M	SO3	frag_SO3	1.2	0.833333	1		
9	H\B2\MSO\B4\M	H2SO		1.2	0.833333	1		
10	Organics		frag_orgal	1.4	0.714286	1		
11	Chloride		frag_chloride	1.3	0.769231	1		
12	Total		\$NH4,\$NO3,\$SO4	1	1	1		
13	NH\B4\M 16	,	frag_NH4[16]	4	0.25	1		
14	NH\B4\M 17	/7	frag_NH4[17]	4	0.25	1		
15	SO\B4\M 48	_48	frag_sulphate[48]		0.833333	1		
40	COLDAIMACA	C4	f		0.02222			




Why do we need an HR frag table?

<u>UMR Frag entries come from:</u>

- Multiple ions at the same UMR
- For HR tofs, largely irrelevant for m/z < 100
- Isotopic abundances
- For HR tofs, largely irrelevant (Pika constrain option is used by default)
- Contribution to different species from the same ion

For HR tofs, this issue remains but there are very few issues (CO2)

Why do we need HR families?

For a typical HR spectra we have >400 ions (not isotopes) we fit. We need a grouping mechanism!

Use the chemical formula to group these ions!

Cx (only has Cs)

CH (only has Cs and Hs)

CHO1 (only has Cs and Hs and one O)

CHOgt1 (only has Cs and Hs and more than one O)

CHN

CHO1N

CHOgt1N

CS

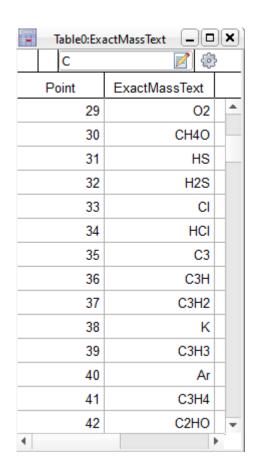
HO

NH

Cl

NO

SO


Air

Tungsten

CSi

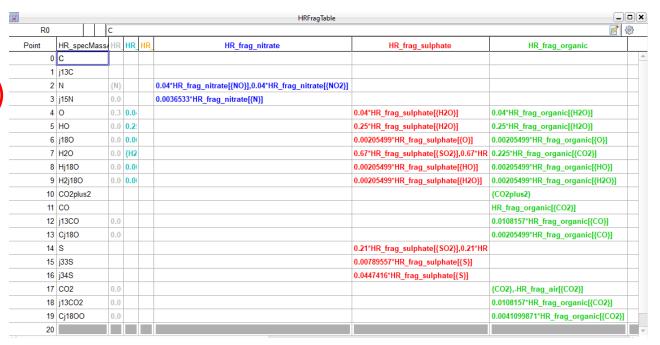
Other

Any user defined list of HR ions

Families allow easy grouping of any fitted HR ion Each HR ion is assigned one and only one family

We can then use families to begin to assemble species

We still need an HR frag table!

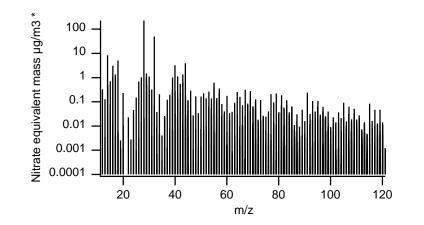

HR Frag entries come from:

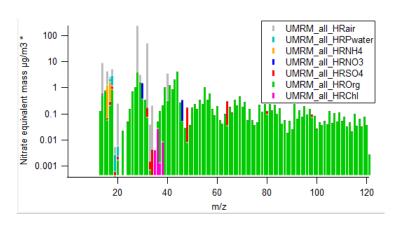
- Multiple ions at the same UMR
- S at 32 (buried in O2), CO at 28 (buried in N2):
- Isotopic abundances

Rare but sometimes needed if dominant m/z HR ion has > m/z than nondominant isotope or dominant ion 'buried' in another peak

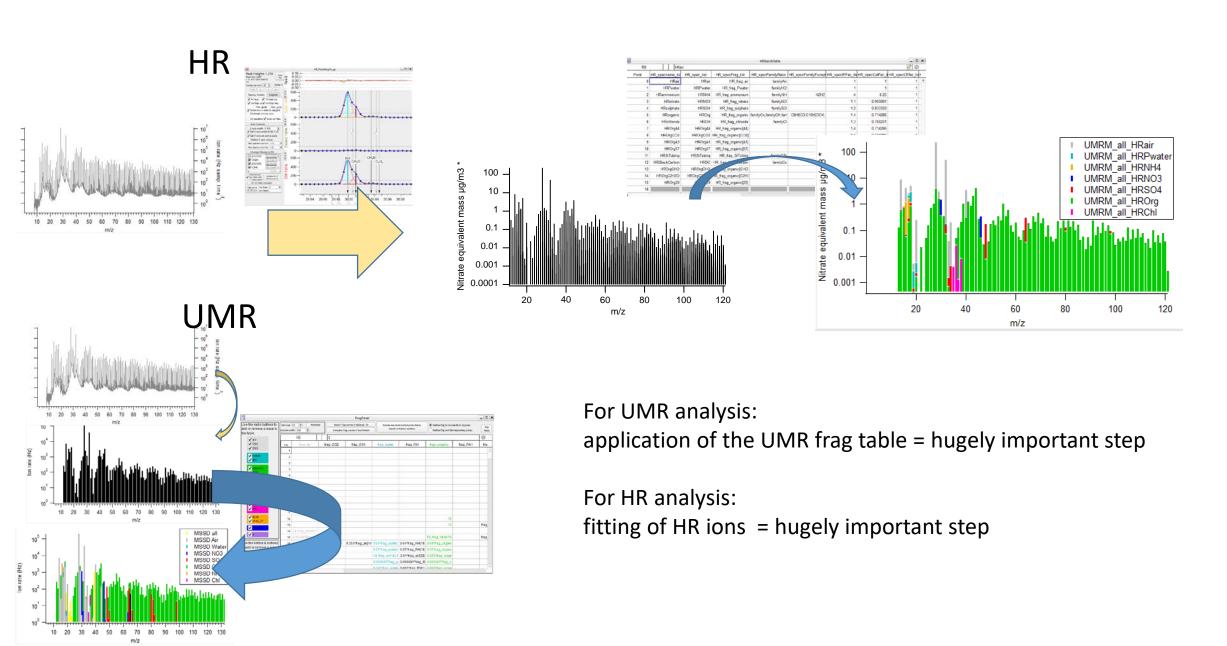
Contribution to different species from the same ion

CO2, H2O, OH, O, N


How are HR species defined in Pika?


A species is a row in the HR batch table!

- long name
- short name
- HR frag wave
- List of families
- HR exceptions to families
- RIE, CE
- color in RGB
- Must begin with 'HR'


A HR ion is not a species! i.e. C3H3O is not a species

HRBatchTable HRBatchTable)
R0	HRair								}
Point	HR_specname_list	HR_spec_list	HR_specFrag_list	HR_specFamilyBase	HR_specFamilyExcept	HR_speclEFac_lis	HR_specCalFac_I	HR_specCEfac_li	sŀ
0	HRair	HRair	HR_frag_air	familyAir		1	1	1	_
1	HRPwater	HRPwater	HR_frag_Pwater	familyHO		1	1	1	
2	HRammonium	HRNH4	HR_frag_ammonium	familyNH	N2H2	4	0.25	1	
3	HRnitrate	HRNO3	HR_frag_nitrate	familyNO		1.1	0.909091	1	
4	HRsulphate	HRSO4	HR_frag_sulphate	familySO		1.2	0.833333	1	
5	HRorganic	HROrg	HR_frag_organic	familyCx;familyCH;fam	C8H5O3;C16H23O4;	1.4	0.714286	1	
6	HRchloride	HRChl	HR_frag_chloride	familyCl		1.3	0.769231	1	П
7	HROrg44	HROrg44	HR_frag_organic[44]			1.4	0.714286	1	
8	HROrgCO2	HROrgCO2	HR_frag_organic[CO2]			1.4	0.714286	1	П
9	HROrg43	HROrg43	HR_frag_organic[43]			1.4	0.714286	1	
10	HROrg57	HROrg57	HR_frag_organic[57]			1.4	0.714286	1	П
11	HRSiTubing	HRSiTubing	HR_frag_SiTubing	familyCSi		1	1	1	П
12	HRBlackCarbon	HRBC	HR_frag_blackCarbon	familyCx		0.2	5	1	П
13	HROrgCHO	HROrgCHO	HR_frag_organic[CHO]			1.4	0.714286	1	
14	HROrgC2H3O	HROrgC2H3O	HR_frag_organic[C2H3			1.4	0.714286	1	
15	HROrg29	HROrg29	HR_frag_organic ^r			1.4	0.714286	1	
16									Ţ
									b

Two answers to the same question: UMR & HR

