Motivation

- Dry deposition rates affect
 - Ambient aerosol concentration
 - Mass transfer via particles
 - Toxic organic compounds
 - Acidic species
 - Nutrients
Dry deposition depends on
 - Meteorology
 - Canopy structure
 - Surface properties
 - Chemical affinity
 - Particle morphology
 - Particle composition

Large uncertainties in deposition rates

Particle deposition velocities as a function of size to forest canopies (Gallagher et al., *Atmos. Environ.* 31:359-373, 1997).
PROPHET

- Program for Research on Oxidants: PHotochemistry, Emissions, and Transport
- Northern Michigan
- 20 Jun – 10 Aug 2001
- 31 m tower
- ~ 20 m forest canopy

Aerosol Sampling

Cyclone 11 l/min (2.1 µm)
AMS 0.09 l/min
Eddy Correlation

- Calculate flux of species \(i \), \(F_i \), from covariance of concentration, \(C_i \), and vertical wind component, \(w \),
 \[
 F_i = \langle w' C_i' \rangle
 \]
- Deposition velocity, \(v_i \), is
 \[
 v_i = -\frac{F_i}{C_i}
 \]
8 Sulfate Deposition

![Graph showing sulfate deposition with text: Agreement with literature values.]

9 Organic Deposition

![Graph showing organic deposition with text: Scatter around zero; Insufficient signal.]

Title goes here
Conclusions

- Synchronized sampling with AMS and anemometer
- Sulfate deposition velocity
 - 0.0 - 0.6 cm/s
 - Agrees with range of literature values
- Low organic concentration at remote site
 - Signal too low for direct eddy-correlation measurement

Future Work

- Improve AMS sensitivity
- Long term measurements in polluted atmosphere
 - Better precision
 - Effect of particle size
 - Effect of particle composition
Acknowledgements

- Funding provided by
 - National Science Foundation
 ATM-0123867
 - Arizona State
 - Environmental Protection Agency
 R-82817201-0
 - MIT, Aerodyne
- PROPHET Managers
 - Mary Anne Carroll
 - Paul Shepson
 - Steven Bertmann