Airplane Integration Issues for the Aerodyne Aerosol Mass Spectrometer

Jose-Luis Jimenez

Aerodyne Research
Billerica, MA

AMS Airplane Integration Issues

- Main issues
 - Keeping the background low
 - Pressure effects on the inlet
 - Inlet heating
 • can be 20-50 C => drive off NO₃, Organics
- Other issues
 - Rack system
 - Power supply
 • Supply electronics with DC from Balzers controller
 • Pumps can run directly on DC from airplane
 - Time resolution
 • Twin Otter: 1 min (clean areas)
 • G-1: 0.5 min (polluted areas)
CIRPAS Twin Otter
Sampling speed: 50 m/s
Maximum altitude ~ 3,000 m
Power: 28 V DC & 110 VAC
Inlet Pressure Effects

- With fixed critical orifice, as P changes:
 - Flow changes
 - Size calibration changes
 - Air Beam changes
 - Because of lower flow
 - Because of different shape of molecular beam
 - Transmission vs. size changes
 - (Transmission vs. size + shape changes)
- Lots of things to calibrate and keep track of
 - Some of them are nearly impossible to calibrate
- It would be to our advantage to keep the pressure inside the lens always the same

Size Calibration Results

\[t = \frac{L}{v} \]

\[v = v_f + \frac{v_a - v_f}{1 + \left(\frac{D_a}{D_r} \right)^b} \]

\[v = v_f + \frac{V_a - V_f}{1 + D_r^b} \]

\[v_f = \frac{v_f}{1 + \left(\frac{D_a}{D_r} \right)^b} \]

\[v_f = \frac{v_f}{1 + D_r^b} \]

\[\frac{v_f}{1 + D_r^b} \]

\[\frac{v_f}{1 + \left(\frac{D_a}{D_r} \right)^b} \]

![Graph of Particle Time of Flight (s) vs. Sample pressure (mbar)](image1)

![Graph of Particle velocity (m/s) vs. Sample pressure (mbar)](image2)
Sensitivity Corrections

• Gain of the multiplier changes with time
• Need to take into account sensitivity changes

\[
Q = 0.58k_d A \sqrt{\frac{\gamma p}{\rho}}
\]

\[
\dot{m} = 0.58k_d A \sqrt{\gamma P \rho}
\]

\[
AB_{\text{Alt}}^\text{Corr} = AB_{\text{Alt}} + f(P_{\text{Grd}}, P_{\text{Alt}})
\]

Air Beam-Pressure Variation

![Graph showing the relationship between sampling pressure and O₂ gas beam frequency, with markers for Air Beam (O₂⁺) and Lens Pressure. The graph indicates a positive correlation between the two variables.]
First Airborne Deployment of an AMS

- Power Consumption: 650 W
- Weight: 220 lb = 98 kg
- Depth: 24" = 0.60 m

Twin Otter Cockpit

Rack Systems: Twin Otter & G-1

Caltech – CIRPAS Twin Otter
Aerodyne – DOE G-1
Rack Systems: 80/20 (Colorado-Jimenez)