AMS vs. NIST Database
Fragmentation Patterns for Pure Organic Molecules

Phil Silva
Aerodyne Research
Billerica, MA

AMS vs. NIST spectra-Questions

• How comparable are the mass spectra?

• Are there any systematic biases?

• How does it affect analysis of organics?
Anthracene

1. 928 941R 38.0P (M) Anthracene
2. 922 936R 29.8P (M) Phenanthrene
3. 893 914R 8.45P (M) Diphenylacetylene
4. 891 894R 7.79P (M) Dibenz[a,e]7,8-diazabicyclo[2.2.2]octa-2,5-diene
5. 887 940R 6.58P (M) 9H-Fluorene, 9-methylene-

Succinic Acid

1. 790 937R 66.6P (M) Butanedioic acid
2. 736 763R 13.0P (M) Succinamic acid
3. 736 746R 13.0P (M) Methylmalonic acid
4. 681 689R 2.53P (M) Imidazole, 2-[[beta-carboxy]propionyl]amino-
5. 646 690R 0.63P (M) Dianhydrodulcitol
Malic Acid

1. 723 819R 60.8P (M) 3,3-Dimethyl-4-methylamino-butan-2-one
2. 664 708R 11.0P (M) L-Guanidinosuccinimide
3. 639 788R 3.35P (M) Acetaldehyde
62 541 594R 0.07P (M) Malic acid

Anthracene

$r = 0.992$
Oleic Acid

\[r = 0.948 \]

Malic Acid

\[r = 0.286 \]
of Carbons in molecule

m/z 44 Ratio AMS

m/z 44 Ratio NIST

of Carbons in molecule

Peak Intensity / Total Ratio

Oxygen/Carbon Ratio

- $y = 0.146x$ \(R=0.817 \)
- $y = 0.173x$ \(R=0.805 \)
AMS vs. NIST spectra

What we know

- Aromatic hydrocarbons close agreement

- Some bias towards lower m/z (more fragmentation) for long, aliphatic species

- Oxygenated compounds thermally decompose to $\text{CO}_2/\text{H}_2\text{O}$