BWP Modeling

Alex Huffman
AMS Users’ Meeting
Oct. 10, 2004
Gaussian Assumption

\[
\gamma_p = \frac{\kappa_{\phi} \gamma_{\phi} \delta_{\phi}}{I} \left[\frac{\gamma_{\phi} \delta_{\phi} \delta_{\phi}^2}{I(x-x_0)^2 + \gamma_{\phi} \delta_{\phi}} + \gamma_{\phi} \delta_{\phi} \delta_{\phi} \right]
\]
• Beam Width Probe (BWP):
 – Collection Efficiency (CE)
 – Surrogate particle non-sphericity
Transmission Curves

For $d = 0.56$ mm:
- $c_{w} = 0.01$: 1.0, 8.64×10^{-7}
- $c_{w} = 0.25$: 1.0, 5.43×10^{-4}
- $c_{w} = 0.5$: 1.0, 3.88×10^{-4}
- $c_{w} = 1$: 0.84, 1.55×10^{-3}
- $c_{w} = 2$: 0.37, 6.21×10^{-3}

For $d = 1.51$ mm:
- $c_{w} = 0.01$: 1.0, 8.64×10^{-7}
- $c_{w} = 0.25$: 1.0, 5.43×10^{-4}
- $c_{w} = 0.5$: 1.0, 3.88×10^{-4}
- $c_{w} = 1$: 0.94, 1.55×10^{-3}
- $c_{w} = 2$: 0.37, 6.21×10^{-3}
Soot Data

![Graph of Soot Data with wire position and transmission values. The graph shows data points and fits for fractal soot and Gaussian distributions.](image)
CE_s Plot

Oleic Acid:
\[\sigma_z = 0.25 \text{ mm}, \ CE = 1.0 \]
"Well-focused" beam

Soot:
\[\sigma_z = 0.75 \text{ mm}, \ CE = 0.96 \]
"Poorly-focused" beam

Standard 45 cm Chamber

35 cm Chamber
Definition of ψ

- Lift shape factor (surrogate non-sphericity parameter):
 \[
 \psi = \frac{\sigma_p^{d_{va}}}{\sigma_{sph}^{d_{va}}}
 \]
- σ is the standard deviation of Gaussian
- Beam width for sphere of given d_{va}: $\sigma_{sph}^{d_{va}}$
- Beam width of particle of same d_{va}: $\sigma_p^{d_{va}}$
Summary Table

<table>
<thead>
<tr>
<th></th>
<th>Beam Width (mm)</th>
<th>CEs</th>
<th>Lift Shape Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleic Acid</td>
<td>0.25</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>0.47</td>
<td>1</td>
<td>1.88</td>
</tr>
<tr>
<td>Ammonium Sulfate</td>
<td>0.68</td>
<td>0.98</td>
<td>2.72</td>
</tr>
<tr>
<td>Fractal Soot (Jay)</td>
<td>0.77</td>
<td>0.95</td>
<td>3.08</td>
</tr>
</tbody>
</table>
BWP Optimization
BWP Current Conclusions

• CE_s (due to shape) is 1.0 in most cases
 – Bounce is much more important for CE (Tim)
• BWP still provides information about:
 – CE_s when important (fractal, etc.)
 – Surrogate shape factor (ψ) achieved easily (to be tested in lab for what it means)
 – Phase related to focusing (Yasmine)
• Optimal BWP ~ 1.0 mm
Trans. vs sigma

Oleic Acid, $\sigma_s = 0.25$ mm

NH_4NO_3, $\sigma_s = 0.47$ mm

$\text{(NH}_4\text{)}_2\text{SO}_4$, $\sigma_s = 0.68$ mm

Wire Position
(Step Number)
- Center
- $\frac{1}{2}$
- 1
- $\frac{1}{2}$
- 2
TCE Summary

- Ambient distribution
- Ambient distribution after cyclone
- Distribution at AMS vaporizer for spheres that do not bounce
- Distribution at AMS after accounting for CE_a
- Distribution at AMS after accounting for CE_b

Graph showing data with axes $d_{ve} (\text{nm})$ and $\frac{dM}{d\log d_{ve}} (\mu g/m^3)$.
Gaussian Volume Integration Table

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>2-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ</td>
<td>68.2</td>
<td>60.7</td>
</tr>
<tr>
<td>2σ</td>
<td>95.5</td>
<td>88.3</td>
</tr>
<tr>
<td>2.36σ</td>
<td>-</td>
<td>93.8</td>
</tr>
<tr>
<td>3σ</td>
<td>99.7</td>
<td>95.6</td>
</tr>
</tbody>
</table>
Aerodynamic Lens

- Forces act to broaden beam only during nozzle expansion

Brownian motion
Lift forces (irregular particles)

2.4 Torr inlet

Axial Coordinate (m)

Radial Coordinate (m)

10^{-3} torr Exit