6th Aerodyne AMS Users’ Meeting
FZ-Julich
Sep. 25, 2004

Thermal Denuder + AMS

Alex Huffman and Jose-Luis Jimenez
University of Colorado at Boulder

Paul Ziemann
University of California at Riverside

John Jayne and Doug Worsnop
Aerodyne Research

One thought about quantification

• I am impressed by the continuing work on characterizing instrument and its problems
 – John, Tim, Peter Liu, Leah, Brendan, Ann and many others

• The AMS (with all its imperfections) is the best characterized instrument
 – Many hard problems, but we are making progress
 • Other instruments also have problems, but often ignored or less well-characterized
 • AMS has more internal diagnostics
 – Real hope: many people thinking and trying new things for a sustained period of time, talking to each other

• Keep it going!
 – E_b will hurt us if no solution in 1-2 years
Thermodenuder-AMS II

• From Qi’s time series analysis (& similar techniques): hard to resolve more than 3-4 components unless exceptional time separation
 – Even 2-3 can be challenging
• We need more separation of the organics to look for new areas of separation
 – High m/z resolution
 – Soft ionization
 – Thermal denuder
 • measure change in aerosol composition as a function of volatilization temperature
 • Advantage: can be done immediately & cheaply
 • But adds complication to the analysis

Motivation: add thermal analysis a-la-Ziemann

![Graph showing contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3](image_url)
Thermodenuder-AMS

• Has been done for physical aerosol measurements many times in the past
 – Tony Clarke
 – Burtcher, Wehner
 – PSI group
 – Volatility TDMA

• Us (Aerodyne + Ziemann + Jimenez groups)
 – TD in front of AMS
 • Also in Schneider et al. ES&T diesel paper
 – Reproduce published Wehner et al. design
 – Focus on organics, time-series analysis, “polymers”
 – EPA wants a database of MS + volatility

Thermodenuder

Thermodenuder Temperature Profile

Old design, Profile is better now

Thermodenuder/TDPBMS
Monocarboxylic and Dicarboxylic Acids

Data from Paul Ziemann, UC Riverside
Motivation: add thermal analysis a-la-Ziemann

FIGURE 4. Thermal desorption profiles of SOA formed from reactions of (A) α-pinene, (B) Δ3-carene, and (C) sabinene with O3 in dry air in the presence of cyclodextrins and 1-propanol ON radical scavengers. The m/z 100 signal is indicative of the C9 dicarboxylic acid (e.g., phytic acid for α-pinene), and the total signal is indicative of the total aerosol mass. The profiles have been normalized to the signal at the maximum.

Data from Paul Ziemann, UC Riverside

Contributions of Organic Peroxides to Secondary Aerosol Formed from Reactions of Monoterpenes with O3

KENNETH S. DOCHERTY, WILBUR WU, TONG BIN LIM, AND PAUL J. ZIEMANN

Air Pollution Research Center, University of California, Riverside, California 92521

Thermodenudogram:

m/z 100 for α-pinene + O3

Riverside, California
Riverside’05: Speciated Time-Series

- Cycle:
 - 10 min ambient, 10 min TD at one T (e.g. 50 C)
 - 10 min ambient, 10 min TD at a different temp (e.g. 75 C)
 - Cycle 8 Ts: ambient / 50 / 75 / 100 / 125 / 150 / 175 / 200 (2.5 hrs)

HR-ToF Time Series
Riverside’05: Thermograms for Nitrate

Nitrate 8/1 5:00am - 10:00am

m/z 30

Riverside’05: Thermograms for Sulfate

Sulfate 8/1 5:00am - 10:00am

m/z 64
Riverside’05: Thermograms for Organics

1.0
0.8
0.6
0.4
0.2
0.0
Fraction Remaining
200
175
150
125
100
75
50
25
Temperature °C

Organics

m/z 57

m/z 43

m/z 44

m/z 43 8/1 5:00am - 10:00 am

m/z 44 8/1 5:00am - 10:00 am

m/z 57 8/1 5:00am - 10:00 am