Elemental Analysis (EA) of Organic Species with Electron Ionization High-Resolution Mass Spectrometry (EI-HRMS)

Allison C. Aiken,1,2 Peter F. DeCarlo,2,3 Ingrid Ulbrich,1,2 Ken Docherty,2 Jose L. Jimenez1,2
University of Colorado at Boulder, Boulder, CO, 80309, U.S.
1Department of Chemistry and Biochemistry, 2Cooperative Institute for Research in the Environmental Sciences (CIRES), 3Department of Atmospheric and Oceanic Sciences (ATOC)

Jesse H. Kroll, Doug R. Worsnop
Aerodyne Research Inc., 45 Manning Rd., Billerica, MA, 01821, U.S.

Qi Zhang, Yele Sun
Department Of Environmental Health Sciences, University at Albany, SUNY, Albany, NY, U.S.

Paul Ziemann
Department Of Environmental Sciences, University of California, Riverside, CA, U.S.

Rami Alfarra, Andre Prevot, Josef Dommen, Jonathan Duplissy, Axel Metzger, Urs Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Switzerland

Monday, October 1, 2007
8th AMS User’s Mtg. DRI, Reno, NV

Funding: NASA, EPA, NSF

Bulk Organic Aerosol Analysis

• Historically poorly characterized
 – Thousands of species
 – No technique or combination can identify all species present in Organic Aerosol (OA) mass
 – Approaches that characterize bulk organic types

• Elemental Analysis (ex: Atomic O/C)
 – Traditional analysis with offline filters (~ 1 mg sample)
 – Thermal method for Organic O (Pang, Turpin, Gundel 2006 AS&T)
 – FTIR Functional group analysis (S. Gilardoni, L. Russell et al. 2007 JGR)
 – First application with unit mass resolution (UMR) AMS data (Zhang 2005 ACP)

• This work using with high-resolution AMS (HR-ToF-AMS)
 – High time and size resolution
 – No filter sampling artifacts
 – Applicable to many AMS Field Data sets
Elemental Analysis (EA) by EI-HRMS

- EI MS Ion intensities \(\propto \) original mass concentration
- Identify all ions (HRMS)
- Determine Elemental Mass
 - Atomic and Mass Ratios
 - Calibrate method
 - Possible frag. biases

Nonanal spectra (AMS)

Potential Positive Ion EI-MS Biases

- Fragmentation with respect to electronegativity
 - Possibility for more electronegative ions to be preferentially lost as neutrals
 - Do the HRMS fragments represent the original composition?
 - Largest issues for Oxygen

- Rearrangements (ex: McLafferty):

- Is quantitative elemental analysis still possible despite these biases?
NIST EI Database Analysis

- National Institute of Standards and Technology (NIST) Database of EI MS
 - Not HRMS, Unit mass resolution (UMR)
 - Limited range of compounds ($16 < MM < 90$)
- 20 compounds
 - Complete MS used
 - ~3 replicates each (from different labs)
- Atomic H/C and O/C determined, some bias but calibration is possible

HR-ToF-AMS Laboratory Experiments

- 35 Organic Compounds
- $114 < MM < 426$
- Organic Aerosols (CHNO)
 - POA's (S&P, 1998)
 - Markers: Levoglucosan, Cholesterol
- EA biases specific to this data
 - Compounds
 - Sampling Conditions
Applicability of the Calibrations

- Laboratory standard calibration
- Application to Ambient/Data sampled “in Air”
 - Calibrations in progress
 - Preparing a panel
 - Changes to the fragmentation table
 - Email release
- Will email the group when paper is published
- A whole new “ANIMAL”
 - ANalysis of Ions Measuring Atomic Levels
 - Maybe even APES!
 - Analytical Procedure for Elemental Separation

Mexico City Ground EA (T0, MILAGRO)

AVG’s: O/C = 0.5, H/C = 1.5, N/C = 0.05, OM/OC = 1.84
Fast Measurements from Aircraft over Mexico City

P. DeCarlo et al., C-130, MILAGRO (2006)

Organic Mass (µg/m3)

Time (UTC)

Over Mexico City

Regional Background

Mexico City Outflow

Primary, Secondary, and Ambient OA

Atomic (O/C) Ratio

Mass (OM/OC) Ratio
Conclusions

- EA successful with HR-ToF-AMS
 - High time resolution with very small sample sizes
 - Biases in fragmentation can be calibrated
 - EA can be used to estimate OM/OC

- O/C for aerosol types
 - ~ 30% avg. error (lab standards, potentially better for Ambient)
 - “Aged” SOA/OOA > “Fresh” SOA/OOA ~ Chamber SOA > POA
 - BBOA ~ Fresh OOA

- N/C is low for OA in Mexico City
 - ON ~ 20% of TN
 - Contrast with fog (Q. Zhang, AAAR 2007)

- Need for intercomparisons of emerging methods
- Calibrations for Ambient measurements to come
 - Email release of panel and paper announcement