SP-AMS: Main Issues for Quantification

1. rBC mIE calibration (laser only)
 • Determination of laser beam and particle beam widths and overlaps
 • mIE_rBC calibration independent of CE issues

2. R_{BC} and NR-PM quantification (laser only; both vaporizers)
 • Is this dependent on particle beam – laser beam overlap?
 • Do RIE’s work across vaporizers?
Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

M. D. Willis1, A. K. Y. Lee1, T. B. Onasch2, E. C. Fortner2, L. R. Williams2, A. T. Lambe2, D. R. Worsnop2, and J. P. D. Abbatt1

1Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
2Aerodyne Research, Inc., Billerica, Massachusetts, USA
DOS coated Regal black

- Coated Regal black particles with DOS to make spherical
- With thicker coatings, RIE_rBC increased as the particle beam narrowed down closer to laser beam width
- NOTE: Low RIE_rBC << 1 was initial observation of deviation of RIE’s possibly due to molecular velocity in ion formation chamber!
Particle Beam Vertical Walk
Bare RB and DOS Coated

- DOS coated Regal black particle beam walk is narrower than bare RB
- R_{BC} definitely depends upon overlap of laser and particle beam
Beam Width Probe (Huffmann et al./Salcedo et al.)

Particle beam

laser

wire motion

wire

y

x

Transmission

wire position (mm)

rBC signal
narrow_beam
wide_beam
BWP Results

- Two independent measures of narrowing of particle beam with coating
- Decreasing particle beam width increases particle-laser beam overlap
Laser and Particle Beam Widths

- Particle beam widths: DOS coated Regal black ~ pure DOS particles
- Laser beam width (σ) is ≤ 0.1 mm
- Use BWP for CE determination in future
Summary 1

• rBC quantification is dependent upon laser alignment and power and overlap with particle beam.
 • BWP will provide internal measurement of particle beam width and, therefore, CE
 • We have new version of BWP hardware!
 • Qualification is that the CE is a strong function of particle beam width, making accurate measurements difficult
NR-PM$_{BC}$ observations

- ORG and rBC signal transmissions decrease together with increasing DOS coating and narrowing of particle beam.
- Suggesting that the effective particle beam widths for rBC and DOS are similar.
• Coated Regal black particles with DOS to make spherical

• With thicker coatings, RIE_rBC increased as the particle beam narrowed down closer to laser beam width

• Dual laser/tungsten vaporizer setup

• Both rBC and Org ion signals increased
• Question, why did the RIE_org start at ~4??
DOS

Laser ON

Laser OFF
300 nm AN

300 nm DOS

• RIE_DOS = 13569 / 2460.6 = 5.51
Results

- $\text{RIE_DOS} = 5.46 \pm 0.18$

- Varying:
 - Two different instruments
 - Several different Pulser Frequencies
 - 200 and 300 nm DOS mobility diameters
 - 4 separate measurements

- High precision ($\sim 4\%$), but $>> 1.4$ for standard Org RIE
- RIE_org for DOS on laser vaporizer is ~10!?!?
- RIE_org laser vaporizer >> W vaporizer??
DOS coated RB Laser OFF/ON
Heater Bias Walk

- Similar observations as Toronto!
- More DOS ions generated from laser-RB than tungsten vaporizer
Summary 2

- NR-PM$_{BC}$ sensitivity shows some evidence (lab) for ~2x increase compared with tungsten vaporizer, though it this is NOT yet definitive.
 - DOS has less fragmentation in laser vaporizer than W-vaporizer
 - DOS vaporizing at lower temperatures from soot surfaces than W-vaporizer, thus moving slower in ion chamber
 - DOS is not representative of ambient observations

- Need more measurements of other materials coated on rBC particles!