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Organonitrates (ON) are important products of gas-phase oxida-
tion of volatile organic compounds in the troposphere; some mod-
els predict, and laboratory studies show, the formation of large,
multifunctional ON with vapor pressures low enough to partition
to the particle phase. Organosulfates (OS) have also been recently
detected in secondary organic aerosol. Despite their potential
importance, ON and OS remain a nearly unexplored aspect of
atmospheric chemistry because few studies have quantified parti-
culate ON or OS in ambient air. We report the response of a
high-resolution time-of-flight aerosol mass spectrometer (AMS)
to aerosol ON and OS standards and mixtures. We quantify the
potentially substantial underestimation of organic aerosol O/C,
commonly used as a metric for aging, and N/C. Most of the ON-
nitrogen appears as NOþ

x ions in the AMS, which are typically
dominated by inorganic nitrate. Minor organonitrogen ions are
observed although their identity and intensity vary between stan-
dards. We evaluate the potential for using NOþ

x fragment ratios,
organonitrogen ions, HNOþ

3 ions, the ammonium balance of the
nominally inorganic ions, and comparison to ion-chromatography
instruments to constrain the concentrations of ON for ambient
datasets, and apply these techniques to a field study in Riverside,
CA. OS manifests as separate organic and sulfate components in
the AMSwith minimal organosulfur fragments and little difference
in fragmentation from inorganic sulfate. The low thermal stability
of ON and OS likely causes similar detection difficulties for other
aerosol mass spectrometers using vaporization and/or ionization
techniques with similar or larger energy, which has likely led to
an underappreciation of these species.

atmospheric chemistry ∣ organic aerosol ∣ organic nitrate ∣
organic sulfate ∣ SOA

Organonitrates (ON, i.e., RONO2) and organosulfates (OS,
i.e., ROSO3H) are known to be present in secondary organic

aerosol (SOA) (1–4), and are a nearly unexplored but potentially
important aspect of atmospheric chemistry. The mechanisms be-
hind ON andOS production and aging are poorly understood and
generally ignored in models due in part to a lack of measurement
approaches. ON have recently been identified as significant com-
ponents (15–35%) of NOy in the gas-phase (5, 6) and serve as
indicators of ozone production (7). Oceans and certain industrial
processes directly emit ON, but these are generally short-chain
alkyl nitrates that exist only in the gas-phase and constitute a min-
or fraction of atmospheric ON (6, 8). Most atmospheric ON are
produced either by photochemical (OH-initiated) or nocturnal
(NO3-initiated) oxidation reactions of anthropogenic and bio-
genic volatile organic compounds (VOCs). These reactions can
produce large, multifunctional ON with vapor pressures poten-
tially low enough to condense and form SOA. During photoche-
mical oxidation of VOCs in the presence of nitrogen oxides, ON
are minor products of peroxy radical ðRO2Þ þNO reactions.
These reactions produce ON with yields of 0–30%, depending

on the size and structure of the VOC precursor (9). Larger VOCs
typically have greater ON yields and result in ON with lower
vapor pressures. ON from NO3 oxidation of isoprene and mono-
terpenes have been suggested to be a substantial biogenic SOA
source (1, 2). Despite several laboratory and modeling studies
demonstrating particulate ON production (1, 2, 10–13), these
species have not been conclusively demonstrated to be a signifi-
cant component of ambient SOA, and are thus often not consid-
ered in SOA models. Model studies including ON production
have suggested that photochemical ON production accounts
for a substantial fraction of SOA functionalization, with estimates
that 18% of SOA molecules possess nitrate groups (10).

The lack of observational constraints on particulate ON is due
to limitations of the existing analysis methods. Off-line analysis of
impactors by FTIR provides a time-averaged indication of ON
(14), but interferences are possible (15), and ON are often below
FTIR detection limit even in highly polluted environments (16).
On the basis of 24-hr averaged filter samples analyzed by FTIR,
particulate ON accounted for approximately 0.25% of total NOy
at a Danish agricultural site, compared to the 7% of gas-phase
ON (17). Real-time instruments tend to sacrifice chemical speci-
ficity for time resolution. Thermal dissociation–laser induced
fluorescence (TD-LIF) measures the sum of gaseous and parti-
culate ON and can thus produce an upper bound on particulate
ON (18). Total particulate organic N has also been recently
estimated as the difference between total N and inorganic N, de-
fined as soluble nitrate-N plus ammonium-N (19). This method
cannot distinguish between reduced and oxidized organic N, but
can provide an upper limit of ambient particulate ON. For exam-
ple, at the Duke Forest site in North Carolina, 33% of the total N
in PM2.5 was estimated to be organic, though this was not classi-
fied into ON versus amines or other organic N. The relative par-
titioning of ON into particle vs. gas-phase and the contribution of
ON to SOA remain open, but important, questions. Alternately,
if ON are not present in aerosols to the extent predicted, then
other atmospheric loss processes need to be considered, including
reaction with OH to release NO2, rapid gas-phase deposition,
photolysis, or reactive conversion to other species, such as HNO3

and organics.
OS (i.e., ROSO3H) have been observed in both laboratory-

generated and ambient organic aerosol (OA) using negative
ion (−) electrospray ionization (ESI)-MS techniques, resulting
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in the understanding that OS form in ambient aerosol from the
oxidation of biogenic VOC in the presence of acidified sulfate
aerosol (4, 20). Although their prevalence in ambient aerosol re-
mains unclear, further evidence for substantial OS contributions
to SOA come from rainwater studies (21). Similar to ON, OS
have been quantified as the difference between total particulate
S and sulfate plus methylsulfonic acid (MSA); studies in rural
Hungary estimated OS accounted for 6–14% of sulfate (22) and
up to 30% of the total organic matter (23). OS fractions of this
order would cause an error in the evaluation of acidity using nom-
inally inorganic ions (24) and constitute a fraction of OA that is
not accounted for in current models. Further, while chamber
studies have focused on OS formation from the uptake of bio-
genic VOC oxidation products on acidified sulfate aerosol (4, 20,
23), anthropogenic VOC oxidation products likely also form OS.

Aerosol mass spectrometers (AMS) have been used to quantify
OA and its sources in numerous field campaigns (25, 26) and
have the advantage over other bulk particle measurement tech-
niques of fast time resolution coupled with quantitative, real-time
chemical speciation and size resolution. Recently, the ability to
quantify the elemental composition of OA with the high-mass-
resolution version of the AMS (HR-AMS) has been demon-
strated (27, 28). However, its response to particulate ON and
OS has not been fully characterized; the AMS uses electron io-
nization (EI), which leads to substantial fragmentation of OA
molecules. Chamber experiments suggest that ON produce NOþ
and NOþ

2 fragments in the AMS (1, 13), which would cause un-
derestimates of O/C and N/C in ambient studies in which such
ions are typically not assumed to arise from OA. Similarly, OS
are expected to produce HxSOþ

y ions (20), which would cause un-
derestimates in O/C and S/C ratios in ambient studies. Previous
application of the AMS to particulate ON and OS measurements
have been limited to laboratory studies in which no other N- or
S-containing species were expected to be present in the aerosol
phase (1, 13, 20).

Here, we present a detailed analysis of the response of an HR-
AMS to particulate ON and OS standards and bracket their con-
tribution to ambient OA in Riverside, CA during the Study of
Organic Aerosols in Riverside (SOAR-1) campaign. A difficulty
in identifying these species is revealed, which is also relevant to
many other instruments used in ambient studies that use similar
or more energetic vaporization and/or ionization techniques as
part of the analysis. This finding may help explain the relative
lack of information on ON and OS in ambient aerosols.

Results
Organonitrates. Table S1 and Figs. S1–S6 summarize fragmenta-
tion of ON standards in the HR-AMS; particulate ON were de-
tected in both the HR-AMS organic and nitrate signals, due to
decomposition in either or both the vaporization or ionization
stage of the AMS. ON standards were dominantly observed as
separate “organic” (CxHyOþ

z , CxHþ
y ) and “nitrate” (HxNyOþ

z )
fragments, with few (approximately 5% of the ON-nitrogen signal
at 600 °C) organonitrogen (CxHyOzNþ

p ) fragments (Fig. 1A). The
identity of the dominant organonitrogen fragments depends on
the standard, consistent with other studies (13) and our under-
standing of fragmentation following EI. Reduced nitrogen (NHy)
ions accounted for an average of 1.8� 0.4% of the N signal in the
ON standards (vaporizer temperature, Tv; ¼ 600 °C), likely from
impurities in the analysis. Neither CxHyNþ

p ions (organonitrogen
ions without O) nor organonitrogen ions with more than one N
were observed. The relative contribution of organonitrogen frag-
ments to total detected N increased in the dihydroxynitrate stan-
dard as Tv was lowered, although the extent to which this occurs
for other standards is unclear. Organonitrogen ions represent
<1% of the total observed organic signal even though C-ONO2

comprise 6–8% of the carbon atoms. The response of the HR-
AMS to the ON standards reported here has important implica-

tions for interpretation of ambient AMS data: first, the carbon
skeleton of the ON is included in OA concentration. Second,
if ON are present, the nitrate reported by the standard AMS soft-
ware cannot be considered entirely inorganic; this will affect es-
timates of not only aerosol acidity, but also of OA oxidation state.

Elemental analysis of the ON standards, including both the
organic and nitrate components, underestimates O/C, H/C,
and N/C ratios relative to predicted, although mostly within
the uncertainty (28) typically observed for organic standards
(Table S1). However, because ON fragment into nitrate compo-
nents typically considered inorganic, the presence of ON in am-
bient aerosol has implications to HR-AMS elemental analysis of
OA. Typical HR-AMS ambient OA elemental analysis includes
only the organic fraction, and thus O/C and N/C ratios will be
underestimated in the presence of ON, as quantified below.

Organosulfates.Only one OS standard (trihydroxy sulfate ester of
isoprene) was successfully analyzed with the HR-AMS, possibly
as other standards tested (e.g., hydroxy sulfate esters of α- and
β-pinene) were either present in very low concentrations or were
lost in the nebulizer or transfer lines before the HR-AMS. Similar
to ON, the OS standard fragmented almost completely to “nom-
inally sulfate” (HxSOy) and “nominally organic” ions in the HR-
AMS, with minimal (approximately 0.5% of organic signal) orga-
nosulfur fragments. The OS fragmented to HxSOþ

y fragments
with a pattern indistinguishable from inorganic sulfate aerosol,
consistent with Liggio and Li (20). Further, no clear Tv depen-
dence in the HxSOþ

y fragmentation pattern was observed. One
distinct organosulfur peak was observed, CH3SOþ

2 , accounting
for 0.3� 0.4% of the S-containing ions signal at Tv ¼ 600 °C
(Table S1, Fig. 1B, and Fig. S7). Other organosulfur ions may
have been present but could not be unequivocally quantified be-
cause of nearby large organic and/or HxSOy peaks and the “ion
sandwiching” described below for organonitrogen fragments. In-
cluding organosulfur fragments that were potentially influenced
by S peaks and improved the residuals suggests that the organo-
sulfur family accounts for a maximum of 1.0� 0.8% of the total S
signal. No CxHyS fragments (organosulfur without O) were ob-
served. CH3SOþ

2 has previously been considered a marker ion
for MSA (29); however, this study suggests that this fragment
is also indicative of OS and that the use of these markers to quan-
tify either MSA or OS is limited to environments in which only
one type of species is present. In the absence of MSA sources
(i.e., away from marine aerosol), an upper estimate of OS could
be obtained from the CH3SOþ

2 fragment, similar to the method
described below to estimate ON from organonitrogen fragments.

Discussion
The results of these experiments suggest five approaches to quan-
tifying ON in ambient AMS data, described in detail in Materials
and Methods. They include (I) NOþ

x fragmentation ratio, (ii) frag-
mentation to HNOþ

3 ions, (iii) fragmentation to NOx-containing
organic ions (CxHyOzNþ), (iv) the NHþ

4 balance, and (v) the dif-
ference between total and inorganic NO−

3 . We applied the differ-
ent methods for ON and OS estimation to ambient HR- AMS
data acquired in Riverside, CA during the SOAR-1 campaign
(30). OA was dominated by SOA (30), and the combination of
high NOx and VOC concentrations should result in significant
ON production. A comparison between the AMS PM1 nitrate
and ion chromatography (IC) PM2.5 nitrate reveals agreement
within the errors, which confirms that the majority of the AMS
nitrate is inorganic (Fig. 2). However, given the uncertainty in
both methods and the difference in size cuts, we cannot rule
out an ON contribution of the order of 10% of the total nitrate.
The AMS-only approaches provide additional constraints on ON
estimates. In this study, the NHþ

4 required to achieve a charge
balance with the measured AMS sulfate, nitrate, and chloride
was predicted to be greater than measured NHþ

4 , consistent with
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the presence of ON, OS, or some residual acidity (Hþ). In this
balance, OS was obtained from filter measurements as described
below. This overprediction of NHþ

4 was linearly correlated
(r2 ¼ 0.70) to NO−

3 , but uncorrelated with chloride or sulfate,
consistent with ON. Assuming that the NHþ

4 overprediction is
due to ON results in an upper limit for ON (“ONNH4”) of about
50% of the AMS nitrate. The correlation between ONNH4 and
AMS-NO−

3 is poor (r2 ¼ 0.32), but has a slope of 0.08–0.22 de-
pending on the regression assumptions, suggesting an alternate
upper limit of ON of about 8–22% of the SOAR-1 total AMS
nitrate. Applying the NOþ

x fragmentation patterns described
above, we calculate an upper limit of ON (“ONNOx”) about
50% of the observed AMS nitrate. Both ONNH4 and ONNOx
are upper limits and are larger than what the comparison of
AMS to IC indicates, likely due to the assumptions that
NaNO3, CaðNO3Þ2, and Hþ were not present, which would bias
the estimates upward.

The ONCHON calculation is hampered by the lack of resolvable
C3H4NOþ and CH4NOþ ions in the ambient data, suggesting
that either the ON standards described above are not represen-
tative of ambient ON, or that ON contributions were minor dur-
ing SOAR-1. Using the remaining three major CHON ions, we
apply Eq. 2 to estimate ONCHON, which is on average 4%
(SD ¼ 6%) of AMS nitrate. The assumptions of this approach
are complicated by the presence of amines or other N-containing
organics (31) that could lead to an ONCHON overestimate.
Although ambient HR-AMS data were taken with Tv ¼ 350
and 450 °C, the HNOþ

3 approach is of little use as the neighboring
CH3SOþ ion (m∕z 62.9904) was approximately 10 to 100× larger
than the HNOþ

3 (m∕z 62.9956) fragment, making quantitative as-
sessment impossible. This test case highlights the difficulty of
meeting the assumptions required to quantify ON with the
HR-AMS. The fewest assumptions and most consistent results
for the SOAR field dataset come from the CxHyOzNþ fragment
and ammonium balance (nonzero intercept) approaches, which
suggest contributions of ON to SOA on the order of 5–10% of
the total AMS nitrate. If we assume that the organic fraction
of the ON molecules has a molecular weight of 200 g∕mol per
ONO2 group, then 0.8–1.6 μgm−3 of the AMS OA (9.5–19%
of the OA) may have ON functionalities.

Similar to ON, OS is fragmented into organic and sulfate com-
ponents in the AMS. In contrast to ON, OS-sulfate are not suffi-
ciently differently from ðNH4Þ2SO4 to enable quantification, or
even to indicate the presence of OS from ratios of nominally
inorganic sulfate fragments. The SOAR data do show clear
CH3SOþ

2 signals. If we assume this signal is from OS, we obtain
an upper bound of approximately 45% contribution of OS to
AMS sulfate. However, the Riverside site was impacted by mar-
ine aerosol, and MSA was observed by multiple instruments,
which would heavily bias these OS estimates upward. Stone et
al. detected approximately 6 nmolm−3 particulate OS with mo-
lecular weight greater than 200 g∕mol by (-)ESI-MS/MS (3).
These results suggest approximately 12% of the AMS-SO2−

4 could
be due to OS, and are not inconsistent with the comparison with
IC and the upper limit derived above, as well as the HR-AMS
observations of CH2SOþ

3 ions. If we assume that the organic frac-
tion of the OS molecules has a molecular weight of 200 per OS
group and take 12% of the AMS-SO2−

4 to be OS, we estimate that
1.1 μgm−3 AMS OA (12% of the AMS OA) have OS function-
alities. Additional OS standards should be run in the HR-AMS to
verify the robustness of the patterns reported here. Rural sites
removed from marine air masses and other organosulfur aerosol
sources will be more appropriate test cases for this OS estimation
method. Intriguingly, this isoprene-derived OS standard was
associated with NHþ

4 , though not on an equimolar basis; the
ammonium balance for the experiment shows that three NHþ

4

are predicted for every two observed. This implies that OS is
not necessarily protonated, and can be negatively charged and
associated with a counterion, consistent with particle-into-liquid
sampler (PILS)/IC data collected from isoprene chamber experi-
ments (32), and thus must be accounted for in the ammonium
balance and in evaluations of aerosol acidity.

As described above, the elemental analysis of ambient OAwith
the HR-AMS typically excludes the nominally inorganic sulfate
and nitrate signals. Assuming that 5–10% of the observed sulfate
and nitrate signals are due to OS and ON and using the SOAR-1
data, we estimate that the impact on elemental analysis results of
total ambient OA is substantial: The true O/C is typically under-
estimated by 10–20% (range 5–50%); N/C ratios are underesti-
mated by a factor of 1.4–2 (range 1.2–3); and S/C ratios are
underestimated by about an order of magnitude. Fig. 3 shows
the comparison of the AMS elemental analysis results under
different assumptions. The best agreement is obtained when it
is assumed that the AMS quantitatively detects all oxygen in
the molecule but completely misses the O in the NO2 group

Fig. 1. (a) Mass spectrum of C, H, N and O in tetradecene-derived
2-hydroxynitrate standard taken with the HR-AMS (Tv 600 °C). Data were
taken and analyzed at high resolution, but are summed to unit mass resolu-
tion for display. Inset demonstrates resolution of organonitrogen peak from
neighboring peaks at m∕z ¼ 60. (b) Mass spectrum of C, H, O, and S in the
OS standard sampled with the HR-ToF-AMS (Tv 600 °C). Inset shows high-
resolution data of the dominant organosulfur peak (CH3SO

þ
2 ).

Fig. 2. (a) Intercomparison of AMS nitrate (y-axis) and IC nitrate (x-axis)
during the SOAR-1 campaign in Riverside, CA. (b) Comparison of the diurnal
cycles of both measurements.
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(but not the third O, which is bonded to a C atom), consistent
with the discussion above.

This study has several implications for interpretation of field
and laboratory data. First, the AMS measures ON (OS) primarily
as organic and nitrate (sulfate) components. Thus, the AMS ni-
trate and sulfate from the standard AMS analysis software cannot
be considered entirely inorganic species. Few organonitrogen
ions are observed from ON, and many are difficult to accurately
quantify because they are typically sandwiched between, or at tail
edges of, large organic ions. Extreme care is needed in the fitting
procedure, as otherwise large biases may result from false organic
N peaks. The estimation of ON from SOAR-1 AMS data using
different procedures highlight the challenges that arise due to the
assumptions of each method, but give results that are roughly
consistent with our current understanding of these species—
namely that ON are likely present at levels of approximately
1 μgm−3 and are 5–10% of the total nitrate mass, but do not
dominate the total AMS nitrate signals. While the HR-AMS only

provides an upper bound for OS, the data are not inconsistent
with the estimate of Stone et al. resulting in approximately
10% of the total AMS sulfate signal being organic (3). Further,
we have demonstrated that atmospheric ON and OS cause under-
estimations of the true O/C, N/C, and S/C ratios of OA by
HR-AMS. Meaningful comparisons to models can be made by
excluding the NO2 (or SO3) groups from the model elemental
composition calculations. These results are not limited to the
HR-AMS; because ON tend to thermally decompose to alkoxy
and NO2 radicals at moderate temperatures (33), other techni-
ques that heat aerosols and/or that use energetic ionization be-
fore detection will suffer from the same limitations as described
here for the HR-AMS, including aerosol mass spectrometers
using thermal desorption, EI, or laser-ablation (34, 35). Our re-
sults demonstrate that OS decomposes during volatilization and/
or ionization, similarly limiting the quantification ability of many
aerosol detection techniques. Quantification of ON and OS with
high time-resolution is essential for atmospheric chemistry stu-
dies, but most current state-of-the-art instrumentation has similar
problems as the AMS for measuring these species. Although we
studied only a handful of ON standards, they are derived from
realistic experiments and cover a range of functionality consistent
with what we expect in the urban atmosphere. Further, while ON
fragmentation into an organic signal depends on the organic com-
ponent, the C-O-NO2 bond energies are consistent for all organic
nitrates and are thus expected to fragment similarly. Additional
ON and OS standards should be analyzed with the AMS to ex-
plore the robustness of the estimation techniques derived here,
particularly the ONCHON approach, as should standards contain-
ing both ON and OS functionality, which have been observed in
ambient aerosol (23). Alternate approaches for quantifying ON
and OS more directly should be pursued including “softer” tech-
niques, such as soft-ionization AMS, which may not fragment
aerosol constituents to the extent of EI, or ESI-MS with an at-
tempt at quantification (3). The TD-LIF approach is particularly
promising as it quantifies the sum of gas and particle ON; to se-
parate these two quantities, we propose that a denuder could be
added to the TD-LIF, thereby removing gas-phase ON by diffu-
sion and allowing separate analysis of particulate components.

Materials and Methods
ON standards were synthesized in an environmental chamber by reacting
oleic acid particles with NO3 (OlA) (36) or 1-tetradecene vapor with
OHþ NOx (TD) (12). Synthesized particles were collected on Millipore filters
[0.45 μm (OA) and 1.0 μm (TD) pore size, Fluoropore FHLP and FALP, 47 mm],
which were then extracted in ethyl acetate and run through a high perfor-
mance liquid chromatography (HPLC) system (Agilent 1100 Series) with UV-
Vis diode array detector, aerosolized with a Collison atomizer, and sampled
by HR-AMS. The HPLC separation method of ON into distinct peaks employed
a water/methanol gradient elution: 50% methanol for 10 min increasing to
100% over 50 min. Each chromatographic peak is a pure standard that has
been previously characterized (12). Standards derived from OlA included
carbonylnitrate isomers (OlA-CN), hydroxynitrate isomers (OlA-HN), and
OlA-CN þOlA-HN oligomers (OlA-olig), while those derived from TD included
dihydroxynitrate isomers (TD-DHN), a 2-hydroxy-1-nitrate (TD-2OH-HN), and
a 1-hydroxy-2-nitrate (TD-1OH-HN). Note that all OlA-CN and OlA-HN com-
pounds have a carboxyl group from the oleic acid parent. Standards were
sampled by the HR-AMS at least three times each, and at each of three
AMS Tv (200, 400, and 600 °C). An OS standard, previously characterized
as a trihydroxy sulfate ester of isoprene (C5H12O7S) (23), was obtained from
high-volume filter sampling conducted at Jefferson Street in downtown
Atlanta, GA during summer 2004 (23). The sample was isolated by HPLC
separation in acetonitrile before HR-AMS detection.

An Aerodyne HR-ToF-AMS (HR-AMS for short), described in detail
previously (37), was used for all analyses. All experiments were performed
in the highest resolution mode (“W-mode”, m∕Δm ∼ 5; 000) to optimize
peak separation. Data analysis procedures for the HR-AMS have been pre-
viously described in detail (28, 37), and give quantitative data on individual
ions and elemental ratios. Briefly, the ion time-of-flight is calibrated to
mass to charge (m∕z) ratios through known m∕z peaks, and mathematical
expressions for the average ion peak width and shape are derived. These

Fig. 3. The elemental analysis of OA from organic nitrate standards under
three assumptions: (a) the AMS detects all oxygen in the ON in the organic
component, (b) the AMS detects all oxygen in the ON but misses the O in the
nitrate (−ONO2) group, and (c) the AMS detects all oxygen in the ON but
misses the O in the NO2 group (but not the O bonded to the C atom). Dashed
black lines show the 1∶1 fit.
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parameters are then used to fit a user-chosen list of ion fragments. The
contribution of background ions is accounted for by subtracting a “closed”
spectrum acquired when the particle and gas beam are blocked and do not
reach the vaporizer/ionizer stage. Additionally, we subtracted a background
particle and solvent signal for each of the ON standards, using the average
spectrum of the chromatographic baseline. The background total signal was
at least three orders of magnitude smaller than the chromatography peak
signals used in this analysis.

We chose the ion fragment list for fitting conservatively: Ions that were
not clearly present in any of the standards (i.e., excluding the ion from the fit
list did not significantly alter the residual, or that including the ion may have
improved the residual but altered the shape of the calculated mass spectrum
such that it was inconsistent with the observed spectrum) were excluded,
thus avoiding spurious signals. A second fragment list was compiled for com-
parison purposes, which included all viable combinations of C1–8HyO0–3N0–2.
Note that no CxHyNp fragments were included in the standard fragment
list, but were included in the extended version. We assign every ion fragment
to a “family” of similar atom combinations; the relevant families in this ex-
periment are the CxHyOz, CxHyOzNp, CxHy , and CxHyNp combinations, which
collectively comprise the organic signal; the NHy family (ammonium signal),
the HxSOy (sulfate signal) and the HxNyOz family (nitrate signal).

Approaches to Quantifying ON with the HR-AMS. NOþ
x ratio (ONNOx ). The

nitrate portion of inorganic and organic nitrates primarily fragments to
NOþ þ NOþ

2 . Nitrate fragmentation, and thus observed NOþ∕NOþ
2 ratio

(NOþ
x ratio), is different for ON vs. NH4NO3 and may allow ON quantification.

Fry et al. (1) report a NOþ
x ratio of approximately 10∕1 from the unit mass

resolution m∕z 30 and 46 peaks of aerosol derived from NO3 þ β-pinene re-
actions, while Bruns et al. report NOþ

x ratios of 10–15 for aerosol derived from
various NO3 þmonoterpene reactions and approximately 5 for NO3 þ
isoprene reactions (13). Fry et al. found this ratio to be much larger than that
observed for NH4NO3 (2.7) and independent of Tv , though unit mass resolu-
tion was used, and the m∕z 30 signal was likely impacted by organic frag-
ments. Bruns et al. also found the organic ratios to be higher than that of
NH4NO3 (2.4). We note that the NOþ

x ratio can depend on the specific instru-
ment, but relative trends should be comparable between instruments. We
calculated the ratio from HR mass spectra to avoid possible interferences.
The average NOþ

x ratio for all the ON standards analyzed at a Tv of 600 °C
was 3.5� 0.3 (errors associated with average values are standard errors of
the mean unless otherwise stated) with a minimum of 1.8� 0.5 for a
tetradecene-derived hydroxynitrate and a maximum of 4.6� 0.2 for oleic
acid-derived hydroxynitrates. There was no clear effect of Tv on the ratio.
The average NOþ

x ratio of 3.5 is similar to the value of 3.0 measured for
NO2 (38), suggesting that a large fraction of RONO2 decomposes on the
vaporizer to ROþ NO2 and that then NO2 is ionized (33). By contrast, ratios
for HNO3 (0.5) (39) and NH4NO3 (1.5� 0.1 for the instrument used in this
experiment) are much smaller.

Because NH4NO3 and ON give very different average NOþ
x ratios (RNH4NO3

and RON), the observed ambient ratio, Robs, could potentially be used to
estimate the fraction of the total nitrate signal due to ON (x), with an asso-
ciated uncertainty (Δx, SI Text) derived from the uncertainties in calibration
and observed ratios (SR):

x ¼ ðRobs − RNH4NO3
Þð1þ RONÞ

ðRON − RNH4NO3
Þð1þ RobsÞ

[1]

For example, an observed NOþ
x ratio of 2.0� 0.2 results in an ON fraction of

0.4� 0.2. There are four important caveats for this approach, however. First,
as fragmentation depends on instrument tuning, NH4NO3 standards need to
be run in the field (which is typically done as part of AMS calibrations) while
running ON standards would also be useful. Second, ON need to be a sub-
stantial fraction of total AMS nitrate in order to be adequately resolved by
this approach. Third, inorganic nitrates such as NaNO3 and CaðNO3Þ2 can also
give large NOþ

x ratios and were postulated to cause elevated NOþ
x ratios (5 to

7) at a coastal site in California during the Intercontinental Transport and
Chemical Transformation (ITCT) campaign (40). Thus, use of the NOþ

x ratio
to quantify ON is limited to areas where mineral and sea-salt nitrates and
other species (e.g., inorganic or organic nitrites, nitro-organics, and amides)
do not contribute significantly to NOþ

x fragments. Fourth, this approach as-
sumes that fragmentation patterns of the multifunctional ON standards
analyzed here are representative of ambient ON.

HNO3∕NOx ratios (ONHNO3). Inorganic oxidized nitrogen ions other than
NOþ

x are detected in different fractions for various nitrates. HNOþ
3 ions (m∕z

62.9956) are far enough from the left edge of the neighboring C5H
þ
3 ion (m∕z

63.0235) to be clearly resolved. HNOþ
3 is observed in both NH4NO3 and ON

standards under standard HR-AMS operating conditions, accounting for a
small fraction of N-containing ON peaks (<0.02%). Moreover, the
HNOþ

3 ∕NO
þ
x ratio in the NH4NO3 spectrum shows a linear temperature

dependence, with HNOþ
3 accounting for 0,0.38, and 0.68% of the inorganic

nitrate N-ions at Tv ¼ 600, 400, and 200 °C. The temperature dependence of
HNOþ

3 ∕NO
þ
x in ON is less clear because the HNOþ

3 ions are small and have
larger uncertainties at 200 °C than at 600 °C due to less fragmentation to
HNOþ

3 coupled with high neighboring organic ions in the standards.
Although the signals are too uncertain at very low and very high Tv to discern
trends, HNOþ

3 is a clear ON peak at 400 °C, which provides a contrast with
NH4NO3. We use the same approach and uncertainty analysis as for the
NOþ

x ratios to calculate the relative contribution of ON to total AMS nitrate
from the HNOþ

3 ∕NO
þ
x at 400 °C. For example, an observed ratio of 0.0027

(30% relative error) gives an ON contribution to total nitrate of 0.3� 0.4.
The uncertainty is larger in this approach than the previous approach because
of greater uncertainties (30–40%) in the HNOþ

3 signal. As outlined above, the
fragmentation pattern depends on instrument tuning, and thus HNOþ

3 ∕NO
þ
x

ratios should be determined in the field for both ON and NH4NO3 standards
at 400 °C. This approach is also sensitive to the presence of other types of
species that can produce these ions, as it assumes that NH4NO3 and ON
are the only source of HNOþ

3 and NOþ
x ions.

CxHyOzNþ fragments (ONCHON). While individual ON standards have
different major ions and patterns, we can use the sum of the signals of
the five major CxHyOzNþ ions, ΣCHON ¼ CH4NOþ þ C2H5NOþ þ C3H4NOþ

þCH2NO
þ
3 þ CH2NO

þ
2 , to quantify ON, assuming that ON are the only source

of these ions, that our set of standards is representative of ambient mixtures
of atmospheric ON, and that the ions can be adequately resolved from
neighboring organic ions in ambient aerosol. We note that the formation
of some of these ions from our ON standards would require complex
rearrangements. ΣCHON accounts for 5� 2% of the total oxidized N signal
(CxHyOzNþ þ HxNO

þ
y ) in the standards analyzed here. The ambient ON signal

calculated using this fraction (RCHON ¼ 0.045) and observed ΣCHON, with
uncertainties calculated by error propagation, is

ON ¼ ΣCHONobserved∕RCHON [2]

For example, for the instrument described in this experiment (RCHON ¼ 0.045,
ΔRCHON ¼ 0.018), a value of ΣCHONobserved ¼ 0.020� 0.004 μgm−3 corre-
sponds to 0.5� 0.2 μgm−3 ON. Imidazoles are likely interferences in this
analysis: They are formed during glyoxal uptake on ammonium sulfate,
amines, and amino acids, and while they mostly form CxHyNþ ions, they
can produce C2H3NOþ, C3H2NOþ, and CH4NOþ ions in the HR-AMS (41). Thus,
this approach may be inappropriate if reduced N ions were observed,
indicating the presence of imidazoles or other non-ON organic N.

Ammonium balance (ONNH4). The NHþ
4 mass required to balance the inor-

ganic anions (SO2−
4 , Cl−, NO−

3 ) should match the observed NHþ
4 in ambient

aerosol when gas-phase ammonia is abundant. When this calculation is done
with AMS data, low measured/predicted NHþ

4 is generally interpreted as due
to acidic aerosols with excess H2SO4 or NH4HSO4 (24). However this observa-
tion could also be due to the presence of ON and/or OS, as these species
increase the nominally inorganic AMS nitrate and sulfate, respectively, and
thus affect the observed NHþ

4 balance. The discrepancy between measured
and calculated NHþ

4 may provide an alternate procedure for placing bounds
on ambient ON with the AMS in the absence of nominally ammonium (i.e.,
amines), sulfate (i.e., OS, MSA) or nitrate [i.e., NaNO3, CaðNO3Þ2], fragments.

Difference between total and inorganic NO−
3 . Subtracting known inor-

ganic NO−
3 (e.g., IC measurements) from AMS nitrate is a fifth possibility for

quantifying ON. However, this approach requires that both techniques mea-
sure the same air masses and sample with identical size cuts. Perhaps more
challenging is the requirement that the two instruments both demonstrate a
high level of accuracy and precision and are cross-calibrated with identical
standards. For example, at Trinidad Head, CA during the ITCT campaign,
the difference between AMS-NO−

3 and PILS-IC nitrate was consistent with
ON (40) and would account for <2% of NOy , but up to half of the AMS-
NO−

3 (40); however, the two relevant instruments were not cross-calibrated,
and it is unlikely they had identical inlet losses or size cuts.

Potential Overestimation of Organonitrogen Ions. In the analysis presented
here, we excluded any ions that were not clearly identifiable given the
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limited resolution of the HR-AMS, providing a conservative, lower-limit esti-
mate of organonitrogen fragments. A key reason for excluding unnecessary
ions in the fitting routine is the bias toward overestimation of organonitro-
gen fragments. CxHyN

þ
p ions are typically sandwiched between large CHþ and

CHOþ ions in HR-AMS spectra, and can easily provide spurious peaks. The
HR-AMS peak fitting routines (37) produces either a positive or zero fit to
chosen ions, but no negative fits, so small errors in them∕z-ion time-of-flight
calibration, or peak width and shape estimates will result in either no effect
or a positive artifact in spurious ions at the expense of real ions. Further, the
more ions included in the fits, the better the fits will necessarily be because
more degrees of freedom are allowed, whether or not the ions are actually
present. The detection of CxHyN

þ
p ions from ON in the AMS would be

surprising because it would involve rearrangements that somehow break
the C-ONO2 bond, remove all the O atoms from NO3, and then form a
C-N bond. This is highly unlikely, particularly when compared to straightfor-
ward mechanistic pathways to CxHyOzN

þ
p ions. Because no evidence for

CxHyN
þ
p ions was observed (i.e., no improvement in the residuals between

measured and fitted mass spectra if these ions were fitted), this dataset
was used to investigate the effect of including extra, spurious ions in the
fitting procedure. With the identical fitting parameters, an additional 383
peaks were fit to the AMS mass spectra of oleic acid-derived ON standards,
including all CxHyN

þ
p and CxHyOzN

þ
p as well as ions that were not expected

to be present in the experiment but are typically included in ambient data

analysis. Inclusion of additional CxHyOzN
þ
p ions caused the fraction of ON-N

recovered in CxHyOzN
þ
p ions to increase from 5 to 20–43%. The upper limit is

due mostly to the analysis procedure fitting CxHyN
þ
p ions in place of neigh-

boring CxHyO
þ
z ions. This effect, potentially due to minute shifts in the m∕z

calibration, both overestimates N and underestimates O in the sample. These
results highlight the need for high-quality m∕z calibrations and peak width/
shape parameters when attempting to quantify minor fragments in AMS
spectra, and also the danger of blindly fitting ions without strong evidence
that they exist. Higher mass resolution than is achieved in the current
HR-AMS (approximately 5,000) is highly desirable to reduce these errors
and uncertainties. The relevance of this limitation and potential overestima-
tion is not limited to HR-AMS instrumentation, but to any high-resolution
mass spectral analysis using the same approach, including chemical ionization
or proton-transfer reaction mass spectrometry.
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SI Text
Error Analysis for ON Estimation Methods. If we take the observed
NOþ

x ratio to be the combination of NOþ
x ions from NH4NO3 and

organonitrate (ON), and the fractional contribution of ON ions
to NOþ

x to be proportional to the fractional contribution of ON to
total NO3− ,

x ¼ NOON þNO2;ON

NOobs þNO2;obs
; [S1]

Robs ¼
NOobs

NO2;obs
¼ NONH4NO3

þ NOON

NO2;NH4NO3
þNO2;ON

; [S2a]

RNH4NO3
¼ NONH4NO3

NO2;NH4NO3

; [S2b]

RON ¼ NOON

NO2;ON
; [S2c]

Combining Eq. S2a–S2c,

Robs ¼
RNH4NO3

NO2;NH4NO3
þRONNO2;ON

NO2;NH4NO3
þNO2;ON

: [S3]

Taking NO2;NH4NO3 ¼ NO2;obs −NO2;ON, Eq S3 can be rewritten,

RobsðNO2;obsÞ ¼ RNH4NO3
ðNO2;obs −NO2;ONÞ þRONNO2;ON;

[S4]

NO2;obsðRobs −RNH4NO3
Þ ¼ NO2;ONðRON −RNH4NO3

Þ: [S5]

Thus, the NOþ
2 derived from ON in the high-resolution version of

the aerosol mass spectrometer (HR-AMS) is

NO2;ON ¼ NO2;obsðRobs −RNH4NO3
Þ

ðRON −RNH4NO3
Þ : [S6]

From our definition of RON,

NOON ¼ RONNO2;obsðRobs −RNH4NO3
Þ

ðRON −RNH4NO3
Þ : [S7]

Eq. S1 can then be rewritten,

x ¼ ðRON þ 1ÞNO2;obsðRobs −RNH4NO3
Þ∕ðRON −RNH4NO3

Þ
ðNOobs þNO2;obsÞ

;

[S8]

x ¼ ðRON þ 1ÞNO2;obsðRobs −RNH4NO3
Þ

ðRON −RNH4NO3
ÞðRobsNO2;obs þNO2;obsÞ

; [S9]

x ¼ ðRobs −RNH4NO3
Þð1þRONÞ

ðRON −RNH4NO3
Þð1þRobsÞ

: [S10]

By error propagation from Eq. S10 (Eq. 1 in manuscript) and
Eq. 2, the uncertainty associated with ONNOx (Δx) and
ONCHON (ΔON) are

Δx ¼ x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Robs

þS2RNH4NO3

ðRobs−RNH4NO3
Þ2 þ

S2RON
þS2RNH4NO3

ðRON−RNH4NO3
Þ2 þ

�
SRON

RON

�
2

þ
�
SRobs

Robs

�
2

vuut ;

[S11]

ΔON ¼ ∑ CHONmajor;obs

RCHONmajor

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔðΣCHONmajor;obsÞ
ΣCHONmajor;obs

�
2

þ
�ΔRCHONmajor

RCHONmajor

�
2

s
: [S12]

1. Hogrefe O, Drewnick F, Lala GG, Schwab JJ, Demerjian KL (2004) Development, opera-
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Fig. S1. High-resolution mass spectra (a–h) at dominant N-containing m∕z ratios, along with m∕z 28 and 44, for the oleic acid-derived hydroxynitrate (OlA-
HN), taken at Tv ¼ 600 °C. The complete mass spectrum (i) is presented at unit mass resolution.

Fig. S2. High-resolution mass spectra (a–h) at dominant N-containing m∕z ratios, along with m∕z 28 and 44, for the oleic acid-derived carbonylnitrate (OlA-
CN), taken at Tv ¼ 600 °C. The complete mass spectrum (i) is presented at unit mass resolution.
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Fig. S3. High-resolution mass spectra (a–f) at dominant N-containingm∕z ratios, along withm∕z 28 and 44, for the tetradecene-derived dihydroxynitrate (TD-
DHN), taken at Tv ¼ 600 °C. The complete mass spectrum (g) is presented at unit mass resolution.

Fig. S4. High-resolution mass spectra (a–f) at dominant N-containingm∕z ratios, along withm∕z 28 and 44, for the tetradecene-derived 2-hydroxynitrate (TD-
2OH-HN), taken at Tv ¼ 600 °C. The complete mass spectrum (g) is presented at unit mass resolution.
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Fig. S5. High-resolutionmass spectra (a–h) at dominant N-containingm∕z ratios, along withm∕z 28 and 44, for the tetradecene-derived 1-hydroxynitrate (TD-
1OH-HN), taken at Tv ¼ 600 °C. The complete mass spectrum (i) is presented at unit mass resolution.
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Fig. S6. The relative contribution of organonitrogen fragments to total N detected, HNOþ
3 ∕NO

þ
x ratio, and NOþ∕NOþ

2 ratio as a function of vaporizer tem-
perature (Tv ) in each of five standards, including the mix of oleic acid-derived oligomers, carbonyl nitrates, and hydroxy nitrates (uncertainty is standard error
the mean). Vaporizer temperatures were 200, 400, and 600 °C for all standards, but are presented offset by �5–15° for comparison purposes.

Farmer et al. www.pnas.org/cgi/doi/10.1073/pnas.0912340107 4 of 5

http://www.pnas.org/cgi/doi/10.1073/pnas.0912340107


Fig. S7. High-resolution mass spectra (a–g) at select S-containing m∕z ratios, along with m∕z 28 and 40, for the organosulfate (OS) standard taken taken at
Tv ¼ 600 °C. The complete mass spectrum (h) is presented at unit mass resolution.

Table S1. Fragmentation pattern of NH4NO3 and ON standards in the HR-AMS at Tv ¼ 600 °C and
fragmentation of ðNH4Þ2SO4 (1) and organic sulfate (this study) standards in the HR-AMS at Tv ¼ 600 °C,
presented as relative signal intensity

NH4NO3 ON standards

OlA-HN OlA-CN OlA-olig TD-DHN TD-2OH HN TD-1OH HN

NOþ 100 100 100 100 100 100 100
NOþ

2 65 22 25 36 25 29 57
HNOþ

3 0.4 0.04 0.4 0.3 — — —
O/C raw 0.15 0.18 0.18 0.18 0.22 0.22

O/C calibrated 0.2 0.24 0.24 0.24 0.29 0.29
O/C cal. w/o NOþ

x 0.11 0.11 0.09 0.11 0.11 0.08
O/C molecular 0.33 0.33 — 0.36 0.29 0.29

H/C raw 1.66 1.66 1.69 1.72 1.76 1.75
H/C calibrated 1.82 1.82 1.86 1.89 1.93 1.92
H/C molecular 1.94 1.83 — 2.07 2.07 2.07

N/C raw 0.03 0.04 0.04 0.04 0.05 0.04
N/C calibrated 0.03 0.04 0.04 0.04 0.05 0.04

N/C cal. w/o NOþ
x 0.0009 0.0009 0.0007 0.0009 0.0007 0.0004

N/C molecular 0.06 0.06 — 0.07 0.07 0.07
OS standards

Fragment Mass ðNH4Þ2SO4 C5H11O7S (OS)

S 31.9721 14 19
SO 47.9670 67 100
SO2 63.9619 100 75
HSO2 64.9697 6 8
CH3SO2 78.9854 — 1
SO3 79.9568 57 37
HSO3 80.9646 26 34
H2SO4 97.9674 17 14

Atomic ratios (the number of oxygen, hydrogen, or nitrogen atoms relative to carbon atoms: O/C, H/C, N/C)
determined by elemental analysis of HR-AMS data, including HxNyO

þ
z , are shown for each ON standard as raw

(experimental, no corrections applied), calibrated (corrected by Aiken et al. (2008) typically used for AMS
elemental analyses) and molecular atomic ratios. Atomic ratios determined without NOþ

x fragments (cal. w/o NOþ
x )

are also presented for each standard. ðNH4Þ2SO4 standards were taken at unit mass resolution, and include the
33SO2 isotope and 33SO3 isotope for HSO2 and HSO3, respectively (1).
OlA-HN: CH3ðCH2Þ7CHðOHÞCHðONO2ÞðCH2Þ7CðOÞOHþ CH3ðCH2Þ7CHðONO2ÞCHðOHÞðCH2Þ7CðOÞOH
OlA-CN: CH3ðCH2Þ7CðOÞCHðONO2ÞðCH2Þ7CðOÞOHþ CH3ðCH2Þ7CHðONO2ÞCðOÞðCH2Þ7CðOÞOH
TD-DHN: CH3ðCH2Þ8CHðONO2ÞðCH2Þ2CHðOHÞCH2OHþ CH3ðCH2Þ9CHðONO2ÞCH2CHðOHÞCH2OH
TD-2OH HN: CH3ðCH2Þ11CHðOHÞCH2ONO2

TD-1OH HN: CH3ðCH2Þ11CHðONO2ÞCH2OH
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