Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies

José L. Jiménez
Aerodyne Research and M.I.T. Chemical Engineering

Peter McClintock
Applied Analysis, Inc.

G.J. McRae
M.I.T. Chemical Engineering

David D. Nelson and Mark S. Zahnisier
Aerodyne Research

9th CRC On-Road Vehicle Emissions Workshop
San Diego, April 21st 1999
Effect of Driving Conditions on Emissions

- Driving conditions may strongly influence emissions
 - e.g. commanded enrichment at high power demand

- Problems:
 - False high emitters / False clean cars in remote sensing
 - Texas Remote Sensing Study (CRC 98): 65% of cars at 5-6 mph/sec are high CO emitters
 - Difficult to compare between RS, dyno cycles, & models
 - Difficult to capture on emissions models
 - MOBILE, EMFAC: EF * Speed Correction * Cycle Correction
 - Modal, Neural Network: very detailed & complex
Vehicle Specific Power (VSP)

\[VSP = \frac{\text{Power}}{\text{Mass}} = \frac{\frac{d}{dt}(E_{\text{Kinetic}} + E_{\text{Potential}}) + F_{\text{Rolling}} \cdot v + F_{\text{Aerodynamic}} \cdot v + F_{\text{internal friction}} \cdot v}{m} \]

\[\approx v \cdot a \cdot (1 + \varepsilon_i) + g \cdot \text{grade} \cdot v + g \cdot C_R \cdot v + \frac{1}{2} \rho_a C_D \frac{A}{m} (v + v_w)^2 \cdot v + C_{if} \cdot v \]

Previous Work:

- **Specific Power** = 2 \cdot v \cdot a \quad \text{(EPA, 1993)}
- **Positive Kinetic Energy** = Σ pos(SP_i)/ Σ distance \quad \text{(Watson et al., 1983)}
- **DPWRSUM** = Σ |SP_i - SP_{i-1}| \quad \text{(Webster and Shih, 1996)}
Vehicle Specific Power (II)

For typical U.S. light-duty vehicles and light-duty trucks (better estimates of the resistance coefficients should be used when available):

\[
VSP = \frac{\text{Power}}{\text{Mass}} \approx 1.1 \cdot v \cdot a + 9.81 \cdot \text{grade} \cdot v + 0.213 \cdot v + 0.000305 \cdot (v + v_w)^2 \cdot v
\]

with VSP in kW/Metric Ton, v (speed) and v_w (headwind into the vehicle) in m/s, a (acceleration) in m/s^2, grade defined as vertical rise/horizontal distance.

\[
VSP = \frac{\text{Power}}{\text{Mass}} \approx 0.22 \cdot v \cdot a + 4.39 \cdot \text{grade} \cdot v + 0.0954 \cdot v + 0.0000272 \cdot (v + v_w)^2 \cdot v
\]

(VSP in kW/Metric Ton, v and v_w in mph, a in mph/sec)
VSP in Emissions Certification Cycles

Federal Test Procedure "Bag 1"

- Rolling Resistance
- Aerodynamic Resistance
- Kinetic Energy Change
- Speed

VSP Specified at each point
VSP in US06 Driving Cycle

![Graph showing VSP in US06 Driving Cycle]

- **Time (sec)**: 0, 25, 50, 75, 100, 125, 150, 175, 200, 225
- **Speed (mph)**: -60, -40, -20, 0, 20, 40, 60
- **Specific Power (kW/Metric Ton)**
- **Rolling Resistance**
- **Aerodynamic Resistance**
- **v*a**
- **Max. SP on FTP**

Graph shows the relationship between speed and power over time, highlighting specific power and resistance components.
VSP in European ECE2 Cycle
VSP Levels of Various Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>VSP (kW/ Metric Ton):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Powers</td>
<td>44 - 112</td>
</tr>
<tr>
<td>0 to 60 mph in 15 seconds</td>
<td>33</td>
</tr>
<tr>
<td>60 mph up a 4% grade</td>
<td>23</td>
</tr>
<tr>
<td>Maximum in FTP/IM240</td>
<td>23</td>
</tr>
<tr>
<td>Rem. Sensing site means</td>
<td>10 - 15</td>
</tr>
<tr>
<td>Average in IM240</td>
<td>8</td>
</tr>
<tr>
<td>ASM 5015</td>
<td>6</td>
</tr>
<tr>
<td>ASM 2525</td>
<td>5</td>
</tr>
</tbody>
</table>
Use of VSP Distributions

Characterize & Compare Driving Cycles, Remote Sensing Sites, or Models
VSP Distributions at RS Sites in Denver

Number of RSD Measurements vs. Specific Power

Vehicle Specific Power kW/t
Advantages of VSP

- Captures dependence of emissions on power
 - Directly specified in certification cycles
- Can be calculated from roadside measurements
 - Mass only appears in aerodynamic term
- One-dimensional
- Direct physical interpretation
Emissions vs. VSP (1 Vehicle)

Sec-by-sec data for a 1994 Jeep Cherokee in HL07 dyno cycle, from SFTP CD-ROM (Haskew et al., 1994)
Binned Sec-by-sec data for a 1994 Jeep Cherokee, from SFTP CD-ROM (Haskew et al., 1994)
Emissions vs. VSP (1 Vehicle)

Binned Sec-by-sec data for a 1994 Jeep Cherokee, from SFTP CD-ROM (Haskew et al., 1994)
VSP > Max. VSP on FTP is good predictor of enrichment
Onset of Enrichment

Binned Sec-by-sec data from chassis dynamometer tests of SFTP CD-ROM (Haskew et al., 1994)
CO Emissions vs. Several Parameters (6 Vehicles)

Binned Sec-by-sec data from chassis dynamometer tests of SFTP CD-ROM (Haskew et al., 1994)
NO\textsubscript{x} Emissions vs. VSP and Power (6 Vehicles)

Binned Sec-by-sec data from chassis dynamometer tests of SFTP CD-ROM (Haskew et al., 1994)
Effect of Payload

Binned Sec-by-sec data from chassis dynamometer tests of SFTP CD-ROM (Haskew et al., 1994) for a 1993 Ford 250
Residence Time in Exhaust System

- Exhaust that leaves the tailpipe at the remote sensor was generated in the engine 1-25 meters before (when VSP>0)
 - Avoid decelerations at high speed
VSP: Implications for Emission Research

- Remote Sensing:
 - Improve clean screen and high emitter detection
 - Valid if $3 \text{ kW/t} < \text{VSP} < 22 \text{ kW/t}$
 - E.g. LA 96: 26% high CO emitters are suspect of enrichment
 - Relate RS results to I/M test results
 - Quantify real emissions at high power levels

- Compare results of:
 - RS sites
 - Dynamometer tests
 - Emission models

- Better representation of power in models
 - Use VSP distribution
Ultra Low Emissions Vehicle

Can screen out power enrichment in RS
Remote Sensing and Dyno Data vs. VSP

![Graph showing average CO emission (%) vs. vehicle specific power (kW / Metric Ton). The graph includes different data sets for Engine-out, Tailpipe, Los Angeles 96 Remote Sensing, and Denver 97-98 Remote Sensing.]

→ Allows Comparison and Interpretation
Remote Sensing and Dyno Data vs. VSP (II)

Los Angeles 96 Remote Sensing
Chicago 97 Remote Sensing
Engine-Out HC for 1 vehicle
Tailpipe HC for 1 vehicle
Correction for Power Demand

- Allows comparison of results of different methods and conditions
 - IM240 and remote sensing
 - Model different cities & road types
Conclusions

• Vehicle Specific Power (VSP)
 – Captures dependence of emissions on power
 • Specified in driving cycles
 – Roadside measurable
 – One dimensional, physically meaningful

• Applications
 – Improve low and high emitter detection on RSD
 – Common metric for emission studies
 • Compare RS, I/M tests, dyno cycles, models
 – Improve emission models