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ABSTRACT:  It is now firmly established that aerosols have important health and 

climate effects spanning local, regional, and global scales.  There are however many 

important aspects of aerosol kinetics and microphysics that are not well understood.  The 

need for more information required to model and develop protective pollution control 

strategies has motivated an increasing amount of research in this area.  Here we present 

results of research utilizing a novel aerosol mass spectrometer.  Techniques were 

developed in this work to perform detailed kinetic and microphysical experiments using 

the device.  The work includes instrument calibration and signal processing. Using the 

apparatus, studies were performed measuring the kinetics of oleic acid with ozone.  In 

addition, a model describing aerosols kinetics over a range of conditions was developed.  

Several preliminary aerosol microphysics studies were also conducted, including water 

uptake on oleic acid, sulfuric acid, and sulfuric acid coated soot.  Experiments designed 

to probe coagulation of submicron sulfuric acid aerosols were also performed.  In an 

appendix to the thesis, elements of air pollution economics are discussed and applied.  A 

novel result applicable to pollution permit trading is derived. 
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Chapter 1 

 

Introduction 

 

1.1 Importance of atmospheric aerosol kinetics and microphysics 

It is now firmly established that aerosols have important health and climate effects, 

playing roles on local, regional, and global levels.  On the local level, aerosols are central 

to our understanding of vehicular and industrial emissions leading to urban air pollution.  

One study estimates that mortality rates increase by 1% for every additional 10 µg m-3 of 

particle loading for aerosol diameters less than 10 µm1.  On a regional level, aerosols are 

transported from areas of high emissions to otherwise clean remote regions of the 

country, complicating local efforts at air pollution control.  On a global level, the 

importance of heterogeneous chemistry on aerosol surfaces has been demonstrated in the 

depletion of the ozone layer2.  In addition, with the increased acceptance of global 

warming, the radiative effect (both direct and indirect) of aerosols currently constitutes 

the most poorly understood factor in efforts to model the earth’s climate3.  Chemical 

kinetic processes determine the compositional dynamics of aerosol particles as they 

interact with reactive trace gases, whereas microphysical processes primarily determine 

aerosol size.  An understanding of both size and composition dynamics for aerosol 

systems is required to model their effect on human health and climate. 
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 Aerosols are defined as any airborne particulate matter, solid or liquid, and 

include dust, fog, smoke, haze, or smog.  Primary aerosols are injected into the 

atmosphere in condensed phase from sources such as soil erosion, oceans, volcanoes, 

forest fires and industrial processes.  Secondary particles form from condensation of 

select vapor species, such as terpenes and pinenes in forested areas or anthropegenic NH3 

with NO2 (forming nitrate particles) or SO2 (forming sulfates)1.  

 

1.2 Overview of this work 

The work described in this thesis is divided into five major sections for organizational 

convenience: 

1. The Aerosol Mass Spectrometer – Flowtube apparatus.  The increasing importance 

of aerosols to our understanding of air pollution problems and climate change has lead to 

rapid advances in instrumentation in recent years.  The AMS was developed in part by 

our group, for aerosol composition and size measurements in the laboratory and in the 

field.  This section describes the operational principle of the device and presents results 

of experiments characterizing some of its detection properties.  This section also provides 

an overview of commercial instrumentation used in these studies, including the Atomizer 

used for aerosol generation, the Differential Mobility Analyzer (DMA) used for aerosol 

sizing, and the Condensation Particle Counter (CPC) used to measure aerosol number 

densities. 

2. AMS signal processing.  The AMS signal is formed from the vaporization of single 

particles at a resistively heated surface near the quadrupole mass filter.  In this section we 

develop a framework for converting this signal into aerosol size distributions, accounting 
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for instrumental effects such as lens transmission efficiency and single particle and/or 

chopper broadening.  This section is especially important for studies of microphysical 

aerosol processes where the size distribution is changing, such as: nucleation of vapor to 

form new particles, condensation and evaporation of gas-phase species interacting with 

the particle surface, and coagulation (or coalescence) of particles to form larger particles. 

3. A chemical kinetic model for reactive transformations of aerosol particles.  

Previous models of heterogeneous interactions have focused on reactive trace gas 

depletion in cloud or aerosol particles and droplets.4,5,6 However, recent laboratory 

studies have demonstrated that reactive trace gas uptake can significantly transform the 

chemical composition of condensed phase species, as is evident from recent work on 

organic aerosols.7,8 This model focuses on transformation rates within the particle phase.  

In limiting cases, the model leads to simple analytical expressions for the condensed 

phase species depletion as a function of aerosol/gas interaction time.  The model takes 

into account gas phase diffusion, mass accommodation, bulk phase chemical reactions, 

surface reactions and particle phase reactant diffusion from the aerosol interior toward the 

surface. 

4. Kinetics of submicron oleic acid aerosols with ozone.  Oleic acid is one of a group 

of organic species proposed as an important tracer species for use in source 

characterization of ambient aerosols9.  Ozone is an important oxidant in the troposphere, 

often in concentrations sufficient to cause adverse effects on human health and 

vegetation10.  In the presence of oxidants such as ozone, the relative fraction of organic 

species may change as the particle ages, and new product species are likely to be 

introduced.  This study focuses on the kinetics of oleic acid (C18H34O2) aerosols with 
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ozone.  In addition to kinetic information, data from these studies were used to determine 

the aerosol size change due to uptake of ozone, assess reaction stoichiometry, and obtain 

qualitative information about the volatility of the reaction products. 

5. Preliminary microphysical studies using the AMS.   The role of aerosols in cloud 

formation and precipitation is increasingly acknowledged11. Such indirect climate effects 

due to aerosols have recently been cited as potentially matching the importance of the 

effects of greenhouse gases12.  A critical quantity in this regard is the water uptake by an 

aerosol of a given composition and size.  For simple systems such as oleic acid, we show 

how to measure Henry’s law water solubility within the particle, including a preliminary 

experimental study of this system.  We also consider water uptake on salts (for 

deliquescence or efflorescence studies) and for soot coated with sulfuric acid.  Finally a 

preliminary study of submicron sulfuric acid microphysics is presented.  In this study we 

demonstrate how to separate nucleation, condensation, and coagulation processes.  A 

method is outlined for measurement of aerosol coagulation rates, and the method is 

applied to preliminary coagulation data. 

 

1.3 Thesis outline 

A description of the instrument is provided in Chapter 2.  Calibration procedures are 

developed in Chapter 3.  In Chapter 4, a chemical kinetic model for aerosols is presented.  

This model is applied to results from the experimental aerosol kinetics study (oleic acid) 

in Chapter 5.  A series of preliminary microphysical experiments is described in Chapter 

6.  The detailed mathematical formulations for Chapter 6 are covered separately in 

Chapter 7.  
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Some basic problem solving tools used in air pollution policy analysis are 

presented in an appendix to the thesis.  This includes a novel application of economic 

theory to the case of polluting firms operating under emission permit trading constraints. 
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