Supporting Information

Farmer et al. 10.1073/pnas.0912340107

SI Text

Error Analysis for ON Estimation Methods. If we take the observed NO_x^+ ratio to be the combination of NO_x^+ ions from NH_4NO_3 and organonitrate (ON), and the fractional contribution of ON ions to NO_x^+ to be proportional to the fractional contribution of ON to total NO_{3^-} ,

$$x = \frac{\text{NO}_{\text{ON}} + \text{NO}_{2,\text{ON}}}{\text{NO}_{\text{obs}} + \text{NO}_{2,\text{obs}}},$$
[S1]

$$R_{obs} = \frac{NO_{obs}}{NO_{2,obs}} = \frac{NO_{NH_4NO_3} + NO_{ON}}{NO_{2,NH_4NO_3} + NO_{2,ON}},$$
 [S2a]

$$\mathbf{R}_{\mathrm{NH}_4\mathrm{NO}_3} = \frac{\mathrm{NO}_{\mathrm{NH}_4\mathrm{NO}_3}}{\mathrm{NO}_{2,\mathrm{NH}_4\mathrm{NO}_3}}, \qquad [S2b]$$

$$R_{\rm ON} = \frac{\rm NO_{\rm ON}}{\rm NO_{2.ON}},$$
 [S2c]

Combining Eq. S2a-S2c,

$$R_{obs} = \frac{R_{NH_4NO_3}NO_{2,NH_4NO_3} + R_{ON}NO_{2,ON}}{NO_{2,NH_4NO_3} + NO_{2,ON}}.$$
 [S3]

Taking $NO_{2,NH4NO3} = NO_{2,Obs} - NO_{2,ON}$, Eq **S3** can be rewritten,

$$\label{eq:Robs} \begin{split} R_{obs}(NO_{2,obs}) = R_{NH_4NO_3}(NO_{2,obs} - NO_{2,ON}) + R_{ON}NO_{2,ON}, \end{split} \tag{S4}$$

$$NO_{2,obs}(R_{obs} - R_{NH_4NO_3}) = NO_{2,ON}(R_{ON} - R_{NH_4NO_3}).$$
 [S5]

Thus, the NO_2^+ derived from ON in the high-resolution version of the aerosol mass spectrometer (HR-AMS) is

$$NO_{2,ON} = \frac{NO_{2,obs}(R_{obs} - R_{NH_4NO_3})}{(R_{ON} - R_{NH_4NO_3})}.$$
 [S6]

 Hogrefe O, Drewnick F, Lala GG, Schwab JJ, Demerjian KL (2004) Development, operation and applications of an aerosol generation, calibration and research facility. Aerosol Sci Technol 38:196–214. From our definition of R_{ON},

$$NO_{ON} = \frac{R_{ON}NO_{2,obs}(R_{obs} - R_{NH_4NO_3})}{(R_{ON} - R_{NH_4NO_3})}.$$
 [S7]

Eq. S1 can then be rewritten,

$$x = \frac{(R_{ON} + 1)NO_{2,obs}(R_{obs} - R_{NH_4NO_3})/(R_{ON} - R_{NH_4NO_3})}{(NO_{obs} + NO_{2,obs})},$$
[S8]

$$x = \frac{(R_{ON} + 1)NO_{2,obs}(R_{obs} - R_{NH_4NO_3})}{(R_{ON} - R_{NH_4NO_3})(R_{obs}NO_{2,obs} + NO_{2,obs})},$$
 [S9]

$$x = \frac{(R_{obs} - R_{NH_4NO_3})(1 + R_{ON})}{(R_{ON} - R_{NH_4NO_3})(1 + R_{obs})}.$$
 [S10]

By error propagation from Eq. **S10** (Eq. 1 in manuscript) and Eq. 2, the uncertainty associated with ON_{NOx} (Δ_x) and ON_{CHON} (Δ_{ON}) are

$$\Delta_{x} = x * \sqrt{\frac{S_{R_{obs}}^{2} + S_{R_{NH_{4}NO_{3}}}^{2}}{(R_{obs} - R_{NH_{4}NO_{3}})^{2}} + \frac{S_{R_{ON}}^{2} + S_{R_{NH_{4}NO_{3}}}^{2}}{(R_{ON} - R_{NH_{4}NO_{3}})^{2}} + \left(\frac{S_{R_{ON}}}{R_{ON}}\right)^{2} + \left(\frac{S_{R_{obs}}}{R_{obs}}\right)^{2}}$$
[S11]

$$\begin{split} \Delta_{\rm ON} &= \frac{\sum {\rm CHON}_{\rm major,obs}}{R_{\rm CHON}_{\rm major}} \\ &* \sqrt{\left(\frac{\Delta(\Sigma {\rm CHON}_{\rm major,obs})}{\Sigma {\rm CHON}_{\rm major,obs}} \right)^2 + \left(\frac{\Delta R_{\rm CHON}_{\rm major}}{R_{\rm CHON}_{\rm major}} \right)^2}. \quad \textbf{[S12]} \end{split}$$

Fig. S1. High-resolution mass spectra (a-h) at dominant N-containing m/z ratios, along with m/z 28 and 44, for the oleic acid-derived hydroxynitrate (OIA-HN), taken at T_v = 600 °C. The complete mass spectrum (i) is presented at unit mass resolution.

Fig. S2. High-resolution mass spectra (a-h) at dominant N-containing m/z ratios, along with m/z 28 and 44, for the oleic acid-derived carbonylnitrate (OIA-CN), taken at T_v = 600 °C. The complete mass spectrum (i) is presented at unit mass resolution.

N A C

() <

Fig. S3. High-resolution mass spectra (a–f) at dominant N-containing m/z ratios, along with m/z 28 and 44, for the tetradecene-derived dihydroxynitrate (TD-DHN), taken at $T_v = 600$ °C. The complete mass spectrum (g) is presented at unit mass resolution.

Fig. S4. High-resolution mass spectra (a-f) at dominant N-containing m/z ratios, along with m/z 28 and 44, for the tetradecene-derived 2-hydroxynitrate (TD-2OH-HN), taken at $T_v = 600$ °C. The complete mass spectrum (g) is presented at unit mass resolution.

Fig. S5. High-resolution mass spectra (a-h) at dominant N-containing m/z ratios, along with m/z 28 and 44, for the tetradecene-derived 1-hydroxynitrate (TD-10H-HN), taken at $T_v = 600$ °C. The complete mass spectrum (i) is presented at unit mass resolution.

Fig. S6. The relative contribution of organonitrogen fragments to total N detected, HNO_3^+/NO_x^+ ratio, and NO^+/NO_2^+ ratio as a function of vaporizer temperature (T_v) in each of five standards, including the mix of oleic acid-derived oligomers, carbonyl nitrates, and hydroxy nitrates (uncertainty is standard error the mean). Vaporizer temperatures were 200, 400, and 600 °C for all standards, but are presented offset by $\pm 5-15^\circ$ for comparison purposes.

Fig. 57. High-resolution mass spectra (a-g) at select S-containing m/z ratios, along with m/z 28 and 40, for the organosulfate (OS) standard taken taken at $T_v = 600$ °C. The complete mass spectrum (h) is presented at unit mass resolution.

Table S1. Fragmentation pattern of NH₄NO₃ and ON standards in the HR-AMS at T_v = 600 °C and fragmentation of (NH₄)₂SO₄ (1) and organic sulfate (this study) standards in the HR-AMS at T_v = 600 °C, presented as relative signal intensity

NH ₄ NO ₃		ON standards					
		OIA-HN	OIA-CN	OIA-olig	TD-DHN	TD-20H HN	TD-10H HN
NO ⁺	100	100	100	100	100	100	100
NO_2^+	65	22	25	36	25	29	57
HND ⁺ 3	0.4	0.04	0.4	0.3	—	_	—
O/C raw		0.15	0.18	0.18	0.18	0.22	0.22
O/C calibrated		0.2	0.24	0.24	0.24	0.29	0.29
O/C cal. w/o NO_x^+		0.11	0.11	0.09	0.11	0.11	0.08
O/C molecular		0.33	0.33	—	0.36	0.29	0.29
H/C raw		1.66	1.66	1.69	1.72	1.76	1.75
H/C calibrated		1.82	1.82	1.86	1.89	1.93	1.92
H/C molecular		1.94	1.83	—	2.07	2.07	2.07
N/C raw		0.03	0.04	0.04	0.04	0.05	0.04
N/C calibrated		0.03	0.04	0.04	0.04	0.05	0.04
N/C cal. w/o NO_x^+		0.0009	0.0009	0.0007	0.0009	0.0007	0.0004
N/C molecular		0.06	0.06	_	0.07	0.07	0.07
		OS standards					
Fragment		Mass	$(NH_4)_2SO_4$	C ₅ H ₁₁ O ₇ S (OS)			
S		31.9721	14	19			
SO		47.9670	67	100			
SO ₂		63.9619	100	75			
HSO ₂		64.9697	6	8			
CH ₃ SO ₂		78.9854	—	1			
SO3		79.9568	57	37			
HSO ₃		80.9646	26	34			
H ₂ SO ₄		97.9674	17	14			

Atomic ratios (the number of oxygen, hydrogen, or nitrogen atoms relative to carbon atoms: O/C, H/C, N/C) determined by elemental analysis of HR-AMS data, including $H_x N_y O_z^+$, are shown for each ON standard as raw (experimental, no corrections applied), calibrated (corrected by Aiken et al. (2008) typically used for AMS elemental analyses) and molecular atomic ratios. Atomic ratios determined without NO_x^+ fragments (cal. w/o NO_x^+) are also presented for each standard. $(NH_4)_2 SO_4$ standards were taken at unit mass resolution, and include the $^{33}SO_2$ isotope and $^{33}SO_3$ isotope for HSO₂ and HSO₃, respectively (1).

 $\begin{array}{l} Ola-HN: CH_{3}(CH_{2})_{7}CH(OH)CH(ONO_{2})(CH_{2})_{7}C(O)OH + CH_{3}(CH_{2})_{7}CH(ONO_{2})CH(OH)(CH_{2})_{7}C(O)OH \\ Ola-CN: CH_{3}(CH_{2})_{7}C(O)CH(ONO_{2})(CH_{2})_{7}C(O)OH + CH_{3}(CH_{2})_{7}CH(ONO_{2})C(O)(CH_{2})_{7}C(O)OH \\ TD-DHN: CH_{3}(CH_{2})_{8}CH(ONO_{2})(CH_{2})_{2}CH(OH)CH_{2}OH + CH_{3}(CH_{2})_{9}CH(ONO_{2})CH_{2}CH(OH)CH_{2}OH \\ TD-2OH HN: CH_{3}(CH_{2})_{11}CH(OH)CH_{2}ONO_{2} \\ TD-1OH HN: CH_{3}(CH_{2})_{11}CH(ONO_{2})CH_{2}OH \\ \end{array}$

DNAS