GEOL 5690 Homework 3, 2016 Due Nov 18, 2016 Plates and paleomag

Plate A has an apparent polar wander path (APW) specified below:

Age	Latitude	Longitude
0 Ma	90°N	0°
15 Ma	80°N	60°E
30 Ma	70°N	100°E
40 Ma	65°N	130°E

Plate B has moved with respect to Plate A over the past 40 million years according to these finite rotation poles which restore B from its present position to its former position at time t relative to A, or $\Omega_{AB}^{0 \to t}$ in the conventions of the notes (note the convention that the rotations are positive if counterclockwise looking down along the axis of the pole):

Age (t)	Pole Latitude	Pole Longitude	Rotation Angle
0	Na	Na	0
15 Ma	0	90°E	7°
30 Ma	20°S	65°E	12°
40 Ma	30°S	60°E	17°

- 1) Determine the APW path for plate B. (hint: both plates will have the same apparent pole position once restored to their proper positions).
- 2) A terrane caught between plates A and B is at latitude 30° and longitude -10°. 40 m.y. old rocks are found to have a paleomagnetic direction of D=16.3 and I=-12.0. Has this moved with plate A, plate B, or neither since this time?

You might find the equations for determining a paleomagnetic direction (D,I) at a latitude λ and longitude from a known paleopole at latitude λ' longitude 'helpful:

$$\cos p = \sin \lambda \sin \lambda' + \cos \lambda' \cos \lambda \cos (\phi' - \phi)$$

$$\tan I = 2 \cot p \text{ where } 0^{\circ} \le p \le 180^{\circ}$$

$$\cos D = \frac{\sin \lambda' - \sin \lambda \cos p}{\cos \lambda \sin p}$$
where $0^{\circ} \le D \le 180^{\circ}$ for $0^{\circ} \le (\phi' - \phi) \le 180^{\circ}$
and $180^{\circ} < D < 360^{\circ}$ for $180^{\circ} < (\phi' - \phi) < 360^{\circ}$