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Fig. 4. Highly generalized time-volume relations of lava flow and tuff
deposits in volcanic fields of the southwestern United States and Mexico
(Sierra Madre Occidental [from McDowell etal ., 1990]). Volume estimates
are in thousands of cubic kilometers (sources of data are in Best et al.
[19895, Table 1] and Ratté et al . [1989]). Note near coincidence in time of
voluminous ash flow activity (ignimbrite flareup) in the five areas [Noble
1972].

Best and Christiansen, JGR 1991
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Very silica rich eruptions and very low volumes of andesites
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Best et al. argue that these are subduction related, noting the Nb depletion.
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Plot of onset of magmatism in the western United States, defined by 90th percentile of ages within 1x1 degree blocks. Note the southwestward sweep out of Montana toward California, and the northward sweep out of Mexico. Evidence for an east-to-west sweep is not clear.
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Figure 5. Contours of age of initial, locally sourced magmatism showing southwesterly
migration of magmatism. Intermediate to silicic intrusive and effusive activity generally
preceded caldera-forming ash-flow eruptions by 2—-6 Ma in any area. For example, forma-
tion of the 34 Ma Caetano caldera followed ~6 Ma of nearby, semi-continuous andesitic to
non-explosive rhyolitic activity (John et al., 2009). Development of the 32.9 Ma Northum-
berland caldera was preceded by andesitic and rhyolitic intrusions at 35.4 Ma (McKee,
1974, 1976; our unpublished data). Henry & John, Geosphere, 2013
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Move into relationship of magmatism to extension...
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Newer compilation sort of supports but sort of suggests that there is a disconnect in central B&R
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Clear evidence for coincidence of magmatism and extension would look like this
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Lined areas are extensional magnitude, shaded are volcanic. In this vision, extension and magmatism are tightly related.



Relative volume Relative intensity

EXTENSION
211 ?
! ISP T |‘
e )
tuff VOLCANISM
-2 =2 lava
L} — l— — ;- - L ] | ) L} Al\ — "
40 30 20 10 0
AGE (Ma)

Fig. 10. Schematic timing of diachronous extension and volcanism for the
entire Great Basin. Generalized relative volumes of volcanic rocks are based
on Figure 3 and essentially represents an integrated picture of volcanism
along a north (older) to south (younger) section through the Great Basin.

Best and Christiansen, JGR 1991

A different view has been that they are complementary.
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Fig. 11. (a) Detachment fault terranes (stippled; from Davis and Lister
[1988]; see also Wusr [1986]) and areas of voluminous volcanic rocks
deposited 34— 17 Ma (diagonal ruling; from Stewart and Carison [1976]; and
D.M. Miller (written communication, 1989)). The 34—17 Ma volcanism
was chiefly pyroclastic, except in central Utah where lavas dominate. (b)
Detachment fault terranes correspond poorly to lava-dominant areas formed
at 43-34 Ma (horizental ruling) and 17-6 Ma (vertical ruling).
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Best and Christiansen, JGR 1991
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Much of the extension here is the Sheep Pass and equivalents, which are looking to be more pre-middle Eocene. Seems a lot of extension is well south of coeval magmatism
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Closer examination of at least one complex suggests that while tightly related in time, extension and volcanism are not coeval.
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Initiation of volcanism has shifted extension into diking--so volcanism could represent extension.
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Or, maybe, we have grossly overestimated extension in Paleogene.
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