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Fa;ult-bend fold

Advantages:
Can be reconstructed from surface geology

Assumptions:
Pervasive slip on bedding planes as rocks pass through hinges
Slip is carried off-section (no deformation of lower plate)

Suppe, 1983




Fault-Propagation fold

SLIP

———

ooy
ARy

SN

RN

Namson and Davis, GSA Bull , 1988 after Suppe and Medwedeff, 1984
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Fig. 24. Structural interpretation of the Nanliao anticline, southern Taiwan (modified from Suppe, 1980b).
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Coalinga, California (site of 1983 earthquake)
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Coalinga anticline grew in the earthquake, which lacked any surface faulting.
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Inbal et al. got lots of small EQs from a very dense array and see the Newport-Inglewood fault extending into the mantle, not detached as thought by Davis
et al. This helps reveal a weakness of the geometric reconstructions of fold belts: they need detachment to go off the edge of the model at the side.



FORELAND STRUCTURAL MODELS
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/ (a), upthrust fault (b), thrust uplift (c), fold-thrust uplift (d), and wrench-
related uplifts (¢). Models a and b after Prucha and others (1965); models
' c and d after Berg (1962b).
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Brown, GSA Mem 171, 1988

Well, as a prelude to the Laramide, let’s discuss a different flavor of this: basement cored folds.
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Figure 5. A comparison of interpretations of the Soda Lakes area, Colorado, utilizing the upthrust model
(a) modified from Osterwald (1961), and the fold-thrust model (b) modified from Berg (1962a).
Comparison of bed-length measurements of the Dakota Sandstone (Kd) and the top of the Precambrian
basement between reference lines (W-X), and (Y-Z), indicates the upthrust model (c) is out of structural
balance by approximately 20 percent, whereas the fold-thrust model (d) is balanced to less than 5
percent error (after Brown, 1987).

Brown, GSA Mem 171, 1988
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H = (BC + AC/2) sin A

S = Total Shortening — Tilt Shortening
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Fault Dip Relative to Footwall = arctan (H/S)

Erslev, Geology, 1986




Figure 1. Models of fault-propagation folds. A: Geometric kink-band model (Suppe and Med-
wedeff, 1984). B, C, D: Analog experimental models of folds above thrust (B; Chester et al.,
1988), reverse (C; Friedman et al., 1980), and normal (D; Withjack et al., 1990) faults.

Erslev, 1991




A. Hanging-Wall Triangular Shear Zone

Volume loss

B. Footwall Triangular Shear Zone

Volume gain
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Figure 2. Geometric end members of triangular shear-zone folding.
Erslev, 1991




A. Initial Geometry

DEFORMED AREA > INITIAL AREA DEFORMED AREA = INITIAL AREA

Figure 3. Simple shear and trishear approximations of homogeneous shear in triangular shear
zones.

Erslev, 1991




Figure 4. TRISHEAR-g ated, h g and heterog fault-pr tion foldi

above (A) thrust (30° dip, 60° apex angle), (B) reverse (60° dip, 60° apex angle)r, aand (C) norm;
(60° dip, 40° apex angle) faults.

A. Anticlinal Stretching B. Synclinal Crowding
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Figure 5. Fault-propagation trajectories suggested by homogeneous, footwall-fixed trishear in
front of thrust faults (45° dip, 60°apex angle).

Advantages:

Deals with more realistic geometries
in foreland situations than fault-bend
folds

Disadvantages:
Requires plastic deformation in

trishear zone, which can become non-
unique in terms of structures

Erslev, 1991




POSTULATED ATTITUDES OF WIND RIVER THRUST

THRUST UPLIFT

Fig. 1. Proposed structural styles for the Wind

River fault. Structure between that in Figure

lc and in le is representative of the fault at

depth; x—-x represents the position of the pres-
ent ground surface.

Smithson et al,, JGR, 1979




SOUTH PASS CITY

TWO WAY TRAVEL TIME (sec)

Figure 3. Unmigrated 24-fold CDP stacked reflection profile representing the upper portion of the Wind River thrust. Arrows define the position
of the events representing reflections from the thrust plane. A = reflections from flat-lying sediments of Green River Basin. C = uplift (in line sec-
tions) of sedimentary reflectors under fault with no evidence of overturning. D = position of thrust against base of sediments. E = thrust reflection in
the Precambrian crystalline rocks of the crust. Smithson et al., Geology, 1978




SW Line1 Line 1A

Figure 4. Interpretation of events seen on all three COCORP profiles. There is an overlap from the top northeast to bottom southwest parts of the
diagram. The position of the Wind River thrust at the sulface is represented by 0 km. The profiles were recorded to 20-s two-way traveltime. Dashed
A= ;

events rep diffractions or off-line refl from flat-lying sediments of the Green River Basin. B = uplift (in time sections) of
sediments underlying the Precambrian thrust over them by the Wind River thrust. C = termination of sedimentary layers agamst thrust with no evi-
dence of overturning. E = appearance of thrust in the Precambrian crystalline rocks of the crust. Dotted lines event.
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Figure 5. B: gravity lies and calculated model. Hori: I and vertical scale in kilometres. T = thickness of layers in kilometres;
p = density in g/cm3. Continuous line represents observed gravity. Dots represent modeled gravity.
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Figure 4. lllustration of congruency bet seismic reflection data on Wind River thrust,
Wyoming, and str | modeling di d in text.

Erslev, Geology, 1986




A /
WYOMING FORELAND .
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Figure 19. Regional true-scale structural cross section (line A-A’, Fig. 1) drawn parallel to direction of
shortening and assumed direction of maximum compression (N.40°E.), demonstrates the conjugate
nature of major foreland crustal faults. Different strike orientations of foreland structures result in
differing amounts of crustal shortening, as shown by crossing the east-west-trending Owl Creek thrust
and Tensleep fault, as compared to the northwest-trending Wind River thrust and the Piney Creek thrust
in the Bighorn Mountains. Total crustal shortening along this line of section is 45 km (about 28 mi). T =
Tertiary; M = Mesozoic; P = Paleozoic; p€ = Precambrian basement complex; To = toward; A = away.

Brown, GSA Mem 171, 1988

Other shortening estimates: 60-120 km by Chapin and Cather (1983) to NNE
43-52 km to ENE (Bird, 1998)
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Figure 12. True-scale cross sections of the Precambrian basement surface in Wyoming (after Blackstone,
= m « 1990a) on lines shown in Figure 2A. These sections assume delamination in the lower crust and a
Figare 2. A: Structure map of Wyoming (afer Blackstone, 19908) with aulsin iner lnes nd folsin - uniform crust-mantle interface at 40 km below sea level. All fault geometries in the lower crust are

lhxku&nu ‘Thick, broken straight lines show the cross-section lines for Figure 12. B: Arches and ba- . .
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Erslev, GSA SP 280, 1993
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Figure 5. Map and rose diagrams of LAR arches, faults, and folds in Wyoming, Colorado-Utah, and New Mexico—Arizona.

Erslev, & Koenig, GSA Mem 204, 2009
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